
15-750 Page34

Error Correcting One Bit Messages

How many bits do we need to correct a one bit error on
a one bit message?

000 001

111

100
101

011

110

010

00 01

1110

2 bits
0 -> 00, 1-> 11
(n=2,k=1,d=2)

3 bits
0 -> 000, 1-> 111
(n=3,k=1,d=3)

In general need d ³ 3 to correct one error. Why?

Role of Minimum Distance
Theorem:

A code C with minimum distance “d” can:
1. detect any (d-1) errors
2. recover any (d-1) erasures
3. correct any errors

Intuition: <board>

Stated another way:
 For s-bit error detection d ³ s + 1
 For s-bit error correction d ³ 2s + 1

15-750 Page36

15-750 Page37

Block Codes

Code described as: (n, k, d)q

Question:
What alphabet did we use so far?
(binary)

(Slight detour into number theory)

å = alphabet
q = |å| = alphabet size
C Í Sn (codewords)

15-750 Page 38

Groups

A Group (G,*,I) is a set G with operator * such that:
1. Closure. For all a,b Î G, a * b Î G
2. Associativity. For all a,b,c Î G, a*(b*c) = (a*b)*c
3. Identity. There exists I Î G, such that for all

a Î G, a*I=I*a=a
4. Inverse. For every a Î G, there exist a unique

element b Î G, such that a*b=b*a=I
An Abelian or Commutative Group is a Group with the

additional condition
5. Commutativity. For all a,b Î G, a*b=b*a

15-750 Page 39

Examples of groups

Q: Examples?
– Integers, Reals or Rationals with Addition
– The nonzero Reals or Rationals with Multiplication
– Non-singular n x n real matrices with

 Matrix Multiplication
– Permutations over n elements with composition

[0®1, 1®2, 2®0] o [0®1, 1®0, 2®2] = [0®0, 1®2, 2®1]

Often we will be concerned with finite groups, I.e.,
ones with a finite number of elements.

15-750 Page 40

Groups based on modular arithmetic
The group of positive integers modulo a prime p

Zp
* º {1, 2, 3, …, p-1} *p º multiplication modulo p

Denoted as: (Zp
*, *p)

Required properties

1. Closure. Yes.
2. Associativity. Yes.
3. Identity. 1.
4. Inverse. Yes.

Example: Z7
*= {1,2,3,4,5,6}

 1-1 = 1, 2-1 = 4, 3-1 = 5, 6-1 = 6

15-750 Page 42

Fields
A Field is a set of elements F with binary operators * and +

such that
1. (F, +) is an abelian group

2. (F \ I+, *) is an abelian group
the “multiplicative group”

3. Distribution: a*(b+c) = a*b + a*c
4. Cancellation: a*I+ = I+

Example: The reals and rationals with + and * are fields.

The order (or size) of a field is the number of elements.
A field of finite order is a finite field.

15-750 Page 43

Finite Fields
ℤ! (p prime) with + and * mod p, is a finite field.

1. (ℤ!, +) is an abelian group (0 is identity)
2. (ℤ! \ 0, ∗) is an abelian group (1 is identity)
3. Distribution: a*(b+c) = a*b + a*c
4. Cancellation: a*0 = 0

We denote this by #! or GF(p)

Are there other finite fields?
What about ones that fit nicely into bits, bytes and words

(i.e with 2k elements)?

15-750 Page 44

GF(2n)

Another notation: #"!
Has 2# elements
Natural correspondence with bits in 0,1 #

E.g., Elements of #"" 	can be represented as a byte,
one bit for each term.

Desired Properties
We look for codes with the following properties:

1. Good rate: k/n should be high (low overhead)
2. Good distance: d should be large (good error correction)
3. Fast encoding and decoding
4. Smaller alphabet (lower finite field size)
5. Small block size k (helps with latency)
6. Others (application specific): want to handle bursty/random

errors, local decodability, ...

15-750 Page45

15-750 Page46

Q:
If no structure in the code, how would one perform encoding?

Gigantic lookup table!

If no structure in the code, encoding is highly inefficient.

A common kind of structure added is linearity

15-750 Page47

Linear Codes

If # is a finite field, then ## is a vector space
Definition: C is a linear code if it is a linear subspace of ##

of dimension k.

This means that there is a set of k independent vectors
 vi Î ## (1 £ i £ k) that span the subspace.

i.e. every codeword can be written as:
 c = a1 v1 + a2 v2 + … + ak vk where ai Î #

“Basis (or spanning) Vectors”

15-750 Page49

Some Properties of Linear Codes

1. Linear combination of two codewords is a codeword.

2. Minimum distance (d) = weight of least weight (non-zero)
codewords

(Weight of a vector refers to the Hamming weight of a vector,
which is equal to the number of non-zero symbols in the
vector)

15-750 Page50

Generator Matrix of a Linear Code

3. Every linear code has a matrix associated with it called
the generator matrix.

Generator Matrix:
 A k x n matrix G such that: C = { mG | m Î #$ }
(Note: Here vectors are “row vectors”.)
 Made from stacking the spanning vectors

mesg

G codeword=

n
n

k

Encoding is efficient (vector-matrix multiply)

15-750 Page55

Example and “Standard Form”

(7,4,3) Hamming code

“Standard form” of G for systematic codes: [Ik A].

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

=

1101000
1010100
0110010
1110001

G

Singleton bound

Theorem: For every (n , k, d)q code,)	 ≥ (, + . − 1)

Another way to look at this: d	 ≤ () − , + 1)

(We will not go into the proof of this theorem in this course
due to limited time on this topic.)

Codes that meet Singleton bound with equality are called
Maximum Distance Separable (MDS)

15-750 Page 58

Maximum Distance Separable (MDS)

Only two binary MDS codes!

Q: What are they?

1. Repetition codes (k = 1)
2. Single-parity check codes (n-k = 1)

Need to go beyond the binary alphabet.

Finite fields!

15-750 Page 59

Reed-Solmon (RS) codes
One of the most widely codes
• Storage systems, communication systems
• Bar codes (2-dimensional Reed-Solomon bar codes)

15-750 Page64

PDF-417
QR code

Aztec code DataMatrix code

images: wikipedia

15-750 Page65

RS code: Polynomials viewpoint
Message: [m0, m1,…, mk-1] where mi Î GF(q)

Consider the polynomial of degree k-1
P(x) = mk-1 xk-1 +  + m1 x + m0

RS code: Codeword: [P(31), P(32), …, P(3n)]
 (distinct 3i‘s)

To make the 3i‘s in P(3i) distinct, need field size q ≥ n

That is, need sufficiently large field size for desired codeword
length.

15-750 Page69

Polynomials and their degrees
Fundamental theorem of Algebra: Any non-zero polynomial

of degree m has at most m roots (over any field).

Corollary 1: If two degree-m polynomials P, Q agree on m+1
points (i.e., if 4 5% = 7(5%) for 5&, 5', … , 5(), then P = Q.

Corollary 2: Given any m+1 points (5%, 9%), there is at most
one degree-m polynomial that has 4 5% = 9% for all these i.

Theorem: Given any m+1 points (5%, 9%), there is exactly one
degree-m polynomial that has 4 5% = 9% for all these i.

 Proof: e.g., use Lagrange interpolation.

In our case, m=k-1

15-750 Page71

Minimum distance of an (n, k) RS code
Theorem: RS codes have minimum distance d = () − , + 1)
Proof: Any ideas?
Hint: Is it a linear code?
1. RS is a linear code: if we add two codewords corresponding

to P(x) and Q(x), we get a codeword corresponding to the
polynomial P(x) + Q(x). Similarly any linear combination..

2. So look at the least weight codeword. It is the evaluation of a
polynomial of degree k-1 at some n points. So it can be zero
on only k-1 points. Hence non-zero on at most (n-(k-1))
points. This means distance at least n-k+1

Apply Singleton bound
Meets Singleton bound: RS codes are MDS

Decoding: Recovering Erasures
Recovering from at most (d-1) erasures:

Received codeword:
[P(31), *, P(32), …,*, P(3n)]: at most (d-1) symbols erased
(where * = erased)
Ideas?
1. At most n-k symbols erased
2. So have P(3i) for at least k evaluations
3. Interpolation to recover the polynomial

Matrix viewpoint: Solving system of linear equations

15-750 Page73

15-750 Page75

Decoding: Correcting Errors
Correcting s errors: (d ≥ 2s+1 ⇒) ≥ , + 2;)
Naïve algo:

– Find k+s symbols that agree on a degree (k-1) poly P(x).
• There must exist one: since originally k + 2s symbols

agreed and at most s are in error
 (i.e., “guess” the n-s uncorrupted locations)

– Can we go wrong?
 Are there k+s symbols that agree on the wrong
 degree (k-1) polynomial P’(x)? No.

• Any subset of k symbols will define P’(x)
• Since at most s out of the k+s symbols are in error,

P’(x) = p(x)

15-750 Page76

Decoding: Correcting Errors
Correcting s errors: (d ≥ 2s+1)

Naïve algo:
– Find k+s symbols that agree on a degree (k-1) poly P(x).

• There must exist one: since originally k + 2s symbols
agreed and at most s are in error

 (i.e., “guess” the n-s uncorrupted locations)

This suggests a brute-force approach, very inefficient.
 “guess” = “enumerate”, so time is (n choose s) ~ n^s.

More efficient algorithms exist: <polynomial>
“The Berlekamp Welch Algorithm” (results in solving a

system of n linear equations; uses “error” polynomials)
 <()") algorithms exist

