190 Chapter 17. Suffix Array Construction

17.2 A linear-time construction algorithm

We can take this “coding” idea one level further to obtain a O(|T|)-
time algorithm to create the suffix array. There are a few linear-time
suffix array construction algorithms. The one we will see is due to
Kéarkkiinen and Sanders [2003].

For simplicity, we make the the text length a multiple of 3 after
padding with a special character. Assume string indices start at 0.
We divide the suffixes conceptually into 3 groups:

* Group 0: Suffixes starting at positions i = 0,3,6,9,--- = (i
mod 3 =0)

[)

* Group 2: Suffixes starting at positions i = 2,5,8,11,--- = (i
mod 3 = 2)

This gives us the following groupings for “mississippi$”, for exam-
ple:

mississiPPi$$

(17.4)

The basic outline of the algorithm is to recursively handle suffixes
from the and i mod 3 = 2 groups and then merge the
i mod 3 = 0 group after each recursion. We now describe the steps
taken by the algorithm, which is called the “Skew Algorithm”.

Step 1: create T'. We first create a new string T’ that is the con-
catenation of T[1...] (thatis T with its first character removed) and
T[2...] (thatis T with its first and second character removed). Sup-
pose T = mississippi, then we have:

T'= |iss|iss|ipp|i$$|ssi|ss’ |pp (17.5)

This puts the group-1 suffixes starting in the first part of T’ and the
group-2 suffixes starting in the second part of T. This at most doubles
the size of T and takes O(|T|) time. We conceptually divide T’ into
blocks of length 3, as shown above.

17.2. A linear-time construction algorithm 191

Step 2: encode T’. We then encode each block of 3 using a new
alphabet where if C; and C; are the codes for 3-blocks i and j then
Ci < C; if and only if block i is lexicographically before block j (and
Ci = C; if blocks i and j are the same 3 letters). We can do this by
sorting each of the 3-blocks using a radix sort (takes O(|T|) time) and
assigning the new code corresponding to the sorted order. This gives
us a new coded string ¢:

T'= |iss|iss|ipp|i$$|ssi|ssi |pp

(17.6)
t= C C B A E E D

Key Point #1: The lexicographical order of the suffixes of the coded
string t is the same as the order of the group 1 and 2 suffixes of T.
Why? Every suffix of t corresponds to some suffix of T (perhaps with
some extra letters at the end of it — in this case the extra characters
are “EED”). Because the tokens are sorted in the same order as the
triples, the sort order of the suffix of t matches that of T. Therefore,
we can recursively compute the suffix array for ¢ to get the ordering
of the group 1 and group 2 suffixes.

Step 3: recursively compute the suffix array for t. In the example
for mississippi$, we obtain the following suffix array A from the
recursive call:

AEED

BAEED

CBAEED

CCBAEED (17.7)
D

ED

EED

= U1 O ©O — N W

and A = [3,2,1,0,6,5,4]. Expanding the coding back, we would
obtain a partial suffix array for T that only includes the suffixes in
group 1 and group 2.

192 Chapter 17. Suffix Array Construction

Step 4: create the inverse suffix array. For the next steps, we need
to know the position of suffix 7 in the suffix array. This is easy to
compute from A: We create a new array S where S; is to the position
of i in the suffix array. If A was the full suffix array of T, we could
do this with a single scan down A by setting S(;) = i. Because A
is actually the partial suffix array of T”, we have to do a little extra
arithmetic to translate suffix numbers from T’ to T and accounting
for the missing suffixes. This can still be done in one pass down A.

See Exercise|17.2]

Step 5: sort the group-0 suffixes. Group-0 suffixes are related to
group-1 suffixes. Specifically, we can encode a group-0 suffix as the
combination of a letter followed by a group-1 suffix. If i =0 mod 3
then suffix T; can be represented by

(T[], T[i +1,...]). (17.8)

Here, T[i+1...]is a group-1 suffix. This is a really clever insight that
we will use in later steps. We therefore can encode group-0 suffixes
using

(T[Z]/ Si+1)/ (179)

where S;;1 is entry in the inverse suffix array S that we computed in
the previous step corresponding to suffix i + 1, which is a group-1
suffix.

Now we can sort the group-0 suffixes using this encoding, again
using a radix sort since they have only two digits. This gives us a
sorted list L of the group-0 suffixes. This all takes O(|T|) time.

Step 6: merge the group-0 suffixes back in. We have to add in the
group 0 suffixes into our partial suffix array that contains group-1 and
group-2 suffixes. The way to do this is to run a list merge algorithm.
You're likely familiar with the list merging done in (say) merge sort.
We use that here with our two lists: the list A of Group-1 and 2
suffixes and the list L of 0-suffixes, which by the previous steps are
each sorted lists. Such a list merge takes O(|T|) if we can compare
the items in O(1) time.

The challenge is how to compare an item from the group-0 list
L with an item from the group-{1, 2} list A. To do this, we use the
clever idea about the relationship between the suffixes again.

17.2. A linear-time construction algorithm 193

To compare a group-0 suffix j with a group-1 suffix i, we can test
whether
(T[i], Si+1) < (T[j1, $j41)? (17.10)
S— N— e
group 1suffix group 0 suffix
Equation (17.10) is true if and only if the group-1 suffix is lexicograph-
ically before the group-0 suffix. To compare a group-0 suffix j with a
group-2 suffix i, we can test whether:

(T[], T[i + 11, Sis2) < (TLj1, T + 11, Sja2)? (17.11)

group 2 suffix group 0 suffix

The reason for the particular encodings as 2- and 3-tuples is that in
each case S;;1, Siz2, S j+1,Sj+2 are either group-1 or group-2. Suppose
i =1 (mod 3). Then the test we have to do is:

(Tli], Sinn)< (Tl Sjer) (17.12)
—_——
i+1=2 mod 3 j+1=1 mod 3

On the other hand if i = 2 (mod 3), then the test we have to do is:

(T[i], Tli +1], Siv2) <(T[LTH+1], Sjv2). (17.13)
~—— ——
i+2=1 mod 3 j+2=2 mod 3

Since S gives the relative position of suffix k among the group-{1, 2}
suffixes, we can do the above tests by comparing these tuples directly.
In either case we are comparing tuples of at most 3 items, each of
these comparisons takes O(1) time, and our list merge to merge A
and L takes the total lengths of the lists we are merging O(|T|) since
we do constant work for each comparison. We now have a complete
suffix array containing all the suffixes.

17.2.1 Running time

Theorem 17.1 (Skew algorithm running time). The Skew algorithm
described above takes O(|T|) to create the suffix array for a string T.

Proof: For a string of length 7, the recurrence for the algorithm is:

T(n)=0(n)+T(2n/3), (17.14)

194 Chapter 17. Suffix Array Construction

where the first term is the time to sort and merge and the second
term comes from the fact that the array in the recursive call is 2/3rds
the size of the starting array.

So, we have T(n) < cn + T(2n/3) for some c. Suppose we “guess’
that T(n) < 3cn. Certainly, this is true when # is 1 for large enough
¢, so that takes care of the base case. We prove the general statement
by induction, assuming it is true for all i < n. Then we have:

7

T(n) < cn+3c(2n/3) by the I.H. (17.15)
=cn+2cn (17.16)

= 3cn. (17.17)

O

17.3 Summary and notes

We’ve seen a succession of more and more efficient algorithms for
suffix array construction, ending up with a linear-time algorithm. The
non-naieve algorithms use an encoding of the string that preserves
some sorting information plus a linear-time sort algorithm, which
is possible since our encodings are all a constant number of digits.
The simpler algorithm of Section 17.1 is probably fine for all but the
longest strings, since the extra O(log n) factor is likely not too bad.
Puglisi et al. [2007] give a survey and synthesis of various suffix array
construction algorithms.

Kasai's algorithm [Kasai et al., 2001] can be used to construct the
LCP array for an already constructed suffix array in linear time.

Presentation Notes

Our presentation of the Skew algorithm follows its original descrip-
tion [Karkkdinen and Sanders, 2003].

17.4 Exercises

Let X be a constant-sized alphabet. Describe how to sort m
length-k strings over L in O(m) time, assuming k is a constant. Your
answer should not be more than 2 sentences.

In Step 4 of the linear-time suffix array construction algorithm
due to Karkkédinen and Sanders (Section 17.2), the algorithm must

17.4. Exercises 195

be able to access the inverse suffix array. In particular, the algorithm
requires a function f(it) — ja that returns the location j4 in the
partial suffix array A computed by the algorithm in this recursion of
the suffix corresponding to the suffix starting at index it of the string
T that is input to this recursive call. In order to compute f, you may
want to precompute some values.

Give a careful pseudocode implementation of the function f and
any pre-computation function pre. You may assume pre and f have
access to any of the data that is available at step 4 of the algorithm.
f should run in constant time and pre should run in at most O(|A|)
time.

