Instructor: Minchen Li

$$R(\mathbf{X},t)J(\mathbf{X},t) = R(\mathbf{X},t)$$

$$R(\mathbf{X}, 0) \frac{\partial \mathbf{V}}{\partial t} (\mathbf{X}, t) = \nabla^{\mathbf{X}} \cdot \mathbf{P}(\mathbf{X}, t) + \mathbf{V} \mathbf{X} \cdot \mathbf{P}(\mathbf{X}, t) + \mathbf{V} \mathbf{Y} \cdot \mathbf{P}(\mathbf{Y}, t) + \mathbf{V} \mathbf{Y} \cdot \mathbf{P}(\mathbf{Y}, t) + \mathbf{V} \mathbf{Y} \cdot \mathbf{P}(\mathbf{Y}, t) + \mathbf{V} \mathbf{Y} \cdot \mathbf{Y} \cdot \mathbf{P}(\mathbf{Y}, t) + \mathbf{V} \mathbf{Y} \cdot \mathbf{Y} \cdot \mathbf{Y} + \mathbf{V} \mathbf{Y} \cdot \mathbf{Y} \cdot \mathbf{Y} + \mathbf{V} \mathbf{Y} + \mathbf$$

$$M(x^{n+1} - (x^n + \Delta tv^n)) - \Delta t^2 f(x^{n+1}) = 0$$

Lec 10: Governing Equations 15-769: Physically-based Animation of Solids and Fluids (F23)

$+ R(\mathbf{X}, 0) \boldsymbol{g}$ Conservation of momentum

Recap: Stress

- a tensor field (like F) measuring pressure (unit: force per area)
- related to F through a constitutive relationship, e.g. neo-Hookean model

Definition (Hyperelastic Materials). Hyperelastic materials are those elastic solids whose first Piola-Kirchoff stress P can be derived from an strain energy density function $\Psi(\mathbf{F})$ via

$$\mathbf{P} = \frac{\partial \Psi}{\partial \mathbf{F}} \qquad P_{ij} = \frac{\partial \Psi}{\partial F_{ij}}$$

Cauchy stress

$$\sigma = \frac{1}{J} \mathbf{P} \mathbf{F}^T = \frac{1}{\det(\mathbf{F})} \frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{F}^T$$

Calculation in the diagonal space (isotropic): $\mathbf{P}(\mathbf{F}) = \mathbf{P}(\mathbf{U}\Sigma\mathbf{V}^T) = \mathbf{U}\mathbf{P}(\Sigma)\mathbf{V}^T = \mathbf{U}\hat{\mathbf{P}}\mathbf{V}^T$.

Recap: Stress Derivative

$$(\delta \mathbf{P})_{ij} = U_{ik} \left(\frac{\partial \mathbf{P}}{\partial \mathbf{F}}(\Sigma)\right)_{klmn} U_{rm} \delta F_{rs} V_{sn} V_{jl}, \text{ and}$$

- - Modes with negative Eigenvalues are directly projected out

Other ways to compute: Analytic Eigensystems for Isotropic Distortion Energies [Smith et al. 2019]

Recap: Inversion-Free Elastodynamics

Strong Form Definition

Definition

$$R(\mathbf{X}, 0) \frac{\partial \mathbf{V}}{\partial t}(\mathbf{X}, t) = \nabla^{\mathbf{X}} \cdot \mathbf{P}(\mathbf{X}, t) \cdot$$

can also be written as $\frac{\partial}{\partial t} (R(\mathbf{X}, t)J(\mathbf{X}, t)) = 0.$

- (Strong Form). Letting $\mathbf{V}(\mathbf{X},t) = \frac{\partial \phi(\mathbf{X},t)}{\partial t} = \frac{\partial \mathbf{x}(\mathbf{X},t)}{\partial t}$ be the velocity defined over **X**, the equations are [Gonzalez and Stuart, 2008] $R(\mathbf{X}, t)J(\mathbf{X}, t) = R(\mathbf{X}, 0)$ Conservation of mass,
 - $+ R(\mathbf{X}, 0)\mathbf{g}$ Conservation of momentum,
- where $\mathbf{X} \in \Omega_0$ and $t \geq 0$. Here R is the mass density, $J(\mathbf{X}, t) =$ det $\mathbf{F}(\mathbf{X}, t)$, \mathbf{P} is the first Piola-Kirchoff stress, and \mathbf{g} is the constant gravitational acceleration. Note that $J(\mathbf{X}, 0) = 1$, and the mass conservation

Strong Form — Conservation of Mass

• Density: $R(\mathbf{X}, t) = \lim_{\epsilon \to +0} \frac{\max(B_{\epsilon}^{t})}{\operatorname{volume}(B_{\epsilon}^{t})} =$

 B_{ϵ}^{t} is the ball of radius ϵ surrounding an arbitrary $\mathbf{X} \in \Omega^{0}$

- Conservation of Mass: B_{ϵ}^{t} is constant over time
 - the material takes more or less space, but the amount (mass) won't change $mass(B_{\epsilon}^{t}) = \int_{R^{t}} R(\mathbf{X})$

$$\mathbf{X}(\mathbf{X}), t)d\mathbf{X} = \int_{B_{\epsilon}^{0}} R(\mathbf{X}, t)J(\mathbf{X}, t)d\mathbf{X} = \mathbf{mass}(B_{\epsilon}^{0}) = \int_{B_{\epsilon}^{0}} R(\mathbf{X}, 0)d\mathbf{X}$$
$$\forall B_{\epsilon}^{0} \subset \Omega^{0} \text{ and } t \ge 0$$
$$R(\mathbf{X}, t)J(\mathbf{X}, t) = R(\mathbf{X}, 0), \quad \forall \mathbf{X} \in \Omega^{0} \text{ and } t \ge 0$$

- Automatically satisfied in Lagrangian methods
- Needs to be explicitly considered in Eulerian methods

$$= \lim_{\epsilon \to +0} \frac{\mathrm{mass}(B_{\epsilon}^{t})}{\int_{B_{\epsilon}^{t}} d\mathbf{x}}$$

Strong Form — Conservation of Momentum Traction

- Types of forces:
 - body forces (or external forces, e.g. gravity)
 - surface forces (or internal forces, which is stress-based, e.g. elasticity)
 - defined via traction (force per area) $\mathbf{T}(\cdot, \mathbf{N}, t): \Omega^0 \to \mathbb{R}^d$ is defined via the relation

$$\operatorname{force}_{S}(B^{0}_{\epsilon}) = \int_{\partial B^{0}_{\epsilon}} \mathbf{T}(\mathbf{X}, \mathbf{N}) ds(\mathbf{X})$$

outside ∂B^0_{ϵ} on material inside B^0_{ϵ} .

where N is the outward-pointing normal direction in the material space, and force_S(B^0_{ϵ}) is the net force on an arbitrary B^0_{ϵ} exerted from material

Strong Form — Conservation of Momentum Traction and Stress

 Traction $ext{force}_S(B^0_\epsilon) = \int_{\partial B^0_\epsilon} \mathbf{T}(\mathbf{X},\mathbf{N}) ds(\mathbf{X})$

> — the force per unit area(3D)/length(2D) that material in N^+ exerts on material in N^- (Internal forces inside B_c^0 are self-balanced)

 Stress (based on Cauchy's Stress Theorem) (first Piola-Kirchoff stress) $\mathbf{P}(\cdot, t) : \Omega^0 \to \mathbb{R}^{d \times d}$

 $\mathbf{T}(\mathbf{X}, \mathbf{N}, t) = \mathbf{P}(\mathbf{X}, t)\mathbf{N}.$

Strong Form — Conservation of Momentum Derivation — Applying Newton's 2nd Law

Then, by applying Newton's second law on B^0_{ϵ} , we can express the conservation of momentum as

$$\begin{split} &\int_{B_{\epsilon}^{0}} R(\mathbf{X}, 0) \frac{\partial \mathbf{V}}{\partial t}(\mathbf{X}, t) d\mathbf{X} \\ &= \int_{\partial B_{\epsilon}^{0}} \mathbf{P}(\mathbf{X}, t) \mathbf{N}(\mathbf{X}) ds(\mathbf{X}) + \int_{B_{\epsilon}^{0}} R(\mathbf{X}, 0) \mathbf{A}^{\text{ext}}(\mathbf{X}, t) d\mathbf{X}, \\ &\forall \ B_{\epsilon}^{0} \subset \Omega^{0} \text{ and } t \geq 0. \end{split}$$

Here we have added the contribution of external body force (such as gravity) with its acceleration \mathbf{A}^{ext} to the change of momentum.

Strong Form — Conservation of Momentum Derivation — Applying Divergence Theorem

$$\begin{split} \int_{B^0_{\epsilon}} R(\mathbf{X},0) \frac{\partial \mathbf{V}}{\partial t}(\mathbf{X},t) d\mathbf{X} \ &= \int_{\partial B^0_{\epsilon}} \mathbf{P}(\mathbf{X},t) \mathbf{N}(\mathbf{X}) ds(\mathbf{X}) + \int_{B^0_{\epsilon}} R(\mathbf{X},0) \mathbf{A}^{\mathrm{ext}}(\mathbf{X},t) d\mathbf{X} \\ & \forall \ B^0_{\epsilon} \subset \Omega^0 \ \mathrm{and} \ t \geq 0. \end{split}$$

Applying Divergence Theorem:

$$\int_{B^0_{\epsilon}} R(\mathbf{X}, 0) \frac{\partial \mathbf{V}}{\partial t}(\mathbf{X}, t) d\mathbf{X} = \int_{B^0_{\epsilon}} \nabla^{\mathbf{X}} \cdot \mathbf{P}(\mathbf{X}, t) d\mathbf{X} + \int_{B^0_{\epsilon}} R(\mathbf{X}, 0) \mathbf{A}^{\text{ext}}(\mathbf{X}, t) d\mathbf{X}, \quad \forall \ B^0_{\epsilon} \subset \Omega^0 \text{ and } t \geq 0$$

holds:

$$\int_{\partial\Omega} \mathbf{f} \cdot \mathbf{n} ds(\mathbf{x}) = \int_{\Omega} \nabla \cdot \mathbf{f} d\mathbf{x}.$$
 (16.13)

Definition 16.2 (Divergence Theorem). For a vector-valued function $\mathbf{f}(\mathbf{x}): \Omega \to \mathbb{R}^d$ defined on a closed domain Ω , let $\mathbf{n}(\mathbf{x})$ be the outwardpointing normal on the boundary of this domain, the following equality

Strong Form — Conservation of Momentum Derivation — Extract the Integrand

$$\int_{B^0_{\epsilon}} R(\mathbf{X}, 0) \frac{\partial \mathbf{V}}{\partial t}(\mathbf{X}, t) d\mathbf{X} = \int_{B^0_{\epsilon}} \nabla^{\mathbf{X}} \cdot \mathbf{P}(\mathbf{X}, t) d\mathbf{X}$$

Here the divergence operator $\nabla \cdot$ acts on every row vector of **P** independently and result in a column vector. Since Equation alsoholds for arbitrary B_{ϵ}^0 , we arrive at the strong form of the force balance equation by removing the integration:

$$R(\mathbf{X}, 0) \frac{\partial \mathbf{V}}{\partial t}(\mathbf{X}, t) = \nabla^{\mathbf{X}} \cdot \mathbf{P}(\mathbf{X}, t) +$$

 $d\mathbf{X} + \int_{B^0_{\epsilon}} R(\mathbf{X}, 0) \mathbf{A}^{\text{ext}}(\mathbf{X}, t) d\mathbf{X}, \quad \forall \ B^0_{\epsilon} \subset \Omega^0 \text{ and } t \ge 0.$

 $-R(\mathbf{X}, 0)\mathbf{A}^{\mathrm{ext}}(\mathbf{X}, t), \quad \forall \mathbf{X} \in \Omega^0 \text{ and } t \geq 0.$

Weak Form Derivation **Applying Test Function** $R(\mathbf{X},0)^{-1}$

Ignoring external force for simplicity

For arbitrary test function $\mathbf{Q}(\cdot, t) : \Omega^0 \to \mathbb{R}^d$, compute the dot product to both sides and integrate

$$\int_{\Omega^0} R(\mathbf{X}, 0) \mathbf{Q}(\mathbf{X}, t) \cdot \mathbf{A}(\mathbf{X}, t) d\mathbf{X} = \int_{\Omega^0} \mathbf{Q}(\mathbf{X}, t) \cdot (\nabla^{\mathbf{X}} \cdot \mathbf{P}(\mathbf{X}, t)) d\mathbf{X},$$
$$\forall \ \mathbf{Q}(\cdot, t) : \Omega^0 \to \mathbb{R}^d \text{ and } t \ge 0.$$
ere we denote $\mathbf{A}(\mathbf{X}, t) = \frac{\partial \mathbf{V}}{\partial t}(\mathbf{X}, t).$

He

- equivalent to strong form as it needs to hold for arbitrary Q

In index notation:
$$\int_{\Omega^0} R(\mathbf{X}, 0) \sum_i Q_i(\mathbf{X}, t) A_i(\mathbf{X}, t) d\mathbf{X} = \int_{\Omega^0} \sum_i Q_i(\mathbf{X}, t) \sum_j P_{ij,j}(\mathbf{X}, t) d\mathbf{X}.$$
Duplicate indices for summation:
$$\int_{\Omega^0} R(\mathbf{X}, 0) Q_i(\mathbf{X}, t) A_i(\mathbf{X}, t) d\mathbf{X} = \int_{\Omega^0} Q_i(\mathbf{X}, t) P_{ij,j}(\mathbf{X}, t) d\mathbf{X}.$$

$$\frac{\partial \mathbf{V}}{\partial t}(\mathbf{X}, t) = \nabla^{\mathbf{X}} \cdot \mathbf{P}(\mathbf{X}, t) + R(\mathbf{X}, 0) \mathbf{A}^{\text{ext}}(\mathbf{X}, t), \quad \forall \mathbf{X} \in \Omega^0 \text{ and } t$$

Weak Form Derivation **Applying Integration by Parts**

$$\int_{\Omega^0} R(\mathbf{X}, 0) Q_i(\mathbf{X}, t) A_i(\mathbf{X}, t) d\mathbf{X} = \int_{\Omega^0} Q_i(\mathbf{X}, t) P_{ij}$$

Now applying Integration By Parts on the right-hand side,

$$egin{aligned} &\int_{\Omega^0} Q_i(\mathbf{X},t) P_{ij,j}(\mathbf{X},t) d\mathbf{X}. \ &= \int_{\Omega^0} (
abla \cdot (Q_i(\mathbf{X},t) \mathbf{P}_i(\mathbf{X},t)) -
abla Q_i(\mathbf{X},t) \cdot \mathbf{P}_i(\mathbf{X},t)) d\mathbf{X}. \ &= \int_{\Omega^0} ((Q_i(\mathbf{X},t) P_{ij}(\mathbf{X},t))_{,j} - Q_{i,j}(\mathbf{X},t) P_{ij}(\mathbf{X},t)) d\mathbf{X}. \end{aligned}$$

$_{j,j}(\mathbf{X},t)d\mathbf{X}$

$)d\mathbf{X}$

$$\nabla \cdot (u(\mathbf{x})\mathbf{V}(\mathbf{x})) = u(\mathbf{x})\nabla \cdot \mathbf{V}(\mathbf{x}) + \nabla u(\mathbf{x}) \cdot \mathbf{V}(\mathbf{x}).$$
(16)

$$\int_{\Omega} \nabla \cdot (u(\mathbf{x}) \mathbf{V}(\mathbf{x})) d\mathbf{x} = \int_{\Omega} u(\mathbf{x}) \nabla \cdot \mathbf{V}(\mathbf{x}) d\mathbf{x} + \int_{\Omega} \nabla u(\mathbf{x}) \cdot \mathbf{V}(\mathbf{x}) d\mathbf{x}.$$
 (16)

Weak Form Derivation **Applying Divergence Theorem**

Then if we further apply divergence theorem on the

$$\begin{split} &\int_{\Omega^0} R(\mathbf{X}, 0) Q_i(\mathbf{X}, t) A_i(\mathbf{X}, t) d\mathbf{X} \\ &= \int_{\partial\Omega^0} Q_i(\mathbf{X}, t) P_{ij}(\mathbf{X}, t) N_j(\mathbf{X}) ds(\mathbf{X}) - \int_{\Omega^0} Q_{i,j}(\mathbf{X}, t) P_{ij}(\mathbf{X}, t) d\mathbf{X}. \end{split}$$

that $\forall \mathbf{Q}(\cdot, t) : \Omega^0 \to \mathbb{R}^d$

$$egin{aligned} &\int_{\Omega^0} R(\mathbf{X},0) Q_i(\mathbf{X},t) A_i(\mathbf{X},t) d\mathbf{X} \ &= \int_{\partial\Omega^0} Q_i(\mathbf{X},t) T_i(\mathbf{X},t) ds(\mathbf{X}) - \int_{\Omega^0} Q_{i,j}(\mathbf{X},t) P_{ij}(\mathbf{X},t) d\mathbf{X}. \end{aligned}$$

e first part of
$$\int_{\Omega^0} ((Q_i(\mathbf{X},t)P_{ij}(\mathbf{X},t))_{,j} - Q_{i,j}(\mathbf{X},t)P_{ij}(\mathbf{X},t))_{,j})$$

The quantity $P_{ij}N_j$ would be specified as a boundary condition. If we let $\mathbf{T}(\mathbf{X}, t)$ be the boundary force per unit reference area (traction) with $T_i = P_{ij}N_j$, then we can say that the conservation of momentum implies

Weak Form Discretization Spatial Sampling and Interpolation

Looking at a specific moment $t = t^n$:

$$egin{aligned} &\int_{\Omega^0} R^0(\mathbf{X}) Q_i^n(\mathbf{X}) A_i^n(\mathbf{X}) d\mathbf{X} \ &= \int_{\partial\Omega^0} Q_i^n(\mathbf{X}) T_i^n(\mathbf{X}) ds(\mathbf{X}) - \int_{\Omega^0} Q_{i,j}^n(\mathbf{X}) P_{ij}^n(\mathbf{X}) ds(\mathbf{X}) \end{aligned}$$

Given a set of sample points indexed by a or b in the simulation domain, we can approximate the test function \mathbf{Q} and the DOF \mathbf{x} as

$$Q_i(\mathbf{X}, t^n) \approx \sum_a Q_{a|i}(t^n) N_a(\mathbf{X}) = \sum_a Q_{a|i}^n N_a(\mathbf{X})$$

 $\mathbf{x}_i(\mathbf{X}, t^n) \approx \sum_b \mathbf{x}_{b|i}(t^n) N_b(\mathbf{X}) = \sum_b \mathbf{x}_{b|i}^n N_b(\mathbf{X})$

where $Q_{a|i}^n = Q_{a|i}(t^n)$ refers to the *i*-th dimension of **Q** evaluated at sample point *a* at time t^n , and $N_a(\mathbf{X}) : \Omega^0 \to \mathbb{R}$ is the interpolation function at sample point *a*.

Weak Form Discretization **Spatial Sampling and Interpolation (Cont.)**

$$Q_{i}(\mathbf{X}, t^{n}) \approx \sum_{a} Q_{a|i}(t^{n}) N_{a}(\mathbf{X}) = \sum_{a} Q_{a|i}^{n} N_{a}(\mathbf{X}),$$
$$\mathbf{x}_{i}(\mathbf{X}, t^{n}) \approx \sum_{b} \mathbf{x}_{b|i}(t^{n}) N_{b}(\mathbf{X}) = \sum_{b} \mathbf{x}_{b|i}^{n} N_{b}(\mathbf{X})$$

Then

$$A_i(\mathbf{X}, t^n) \approx \sum_b A_{b|i}(t^n) N_b(\mathbf{X}) = \sum_b A_{b|i}^n N_b(\mathbf{X})$$

$$\int_{\Omega^{0}} R^{0}(\mathbf{X}) Q_{i}^{n}(\mathbf{X}) A_{i}^{n}(\mathbf{X}) d\mathbf{X}$$
$$= \int_{\partial\Omega^{0}} Q_{i}^{n}(\mathbf{X}) T_{i}^{n}(\mathbf{X}) ds(\mathbf{X}) - \int_{\Omega^{0}} Q_{i,j}^{n}(\mathbf{X}) P_{ij}^{n}(\mathbf{X}) d\mathbf{X}$$

$$\begin{split} &\int_{\Omega^0} R(\mathbf{X},0) Q_{a|i}^n N_a(\mathbf{X}) A_{b|i}^n N_b(\mathbf{X}) d\mathbf{X} \\ &= \int_{\partial\Omega^0} Q_{a|i}^n N_a(\mathbf{X}) T_i(\mathbf{X},t^n) ds(\mathbf{X}) - \int_{\Omega^0} Q_{a|i}^n N_{a,j}(\mathbf{X}) P_{ij}(\mathbf{X},t^n) d\mathbf{X}. \end{split}$$

Weak Form Discretization Mass Matrix

$$egin{aligned} &\int_{\Omega^0} R(\mathbf{X},0) Q_{a|i}^n N_a(\mathbf{X}) A_{b|i}^n N_b(\mathbf{X}) d\mathbf{X} \ &= \int_{\partial\Omega^0} Q_{a|i}^n N_a(\mathbf{X}) T_i(\mathbf{X},t^n) ds(\mathbf{X}) - \int_{\Omega^0} Q_{a|i}^n N_{a,j}(\mathbf{X}) P_{ij}(\mathbf{X},t^n) d\mathbf{X}. \end{aligned}$$

On the left-hand-side, we see that the sample values $Q_{a|i}^n$ and $A_{b|i}^n$ are in fact independent of the integration, so we can move them out of the integral and obtain

$$egin{aligned} &M_{ab}Q^n_{a|i}A^n_{b|i}\ &=\int_{\partial\Omega^0}Q^n_{a|i}N_a(\mathbf{X})T_i(\mathbf{X},t^n)ds(\mathbf{X})-\int_{\Omega^0}Q^n_{a|i}N_{a,j}(\mathbf{X}). \end{aligned}$$

where

$$M_{ab} = \int_{\Omega^0} R(\mathbf{X}, 0) N_a(\mathbf{X}) N_b(\mathbf{X}) d\mathbf{X}$$

is the mass matrix.

 $P_{ij}(\mathbf{X}, t^n) d\mathbf{X}$

Remark 17.1. The mass matrix M (Equation 17.7) is symmetric positive semi-definite because it can be written as $\int_{\Omega^0} B B^T d\mathbf{X}$ where $B_i =$ $\sqrt{R(\mathbf{X},0)}N_i(\mathbf{X})$ so that $z^T M z = \int_{\Omega^0} (z^T B)^2 d\mathbf{X} \ge 0$ for any vector z. In practice, this mass matrix may be singular. Therefore, we usually apply a "mass lumping" strategy to approximate the mass matrix with a diagonal and positive definite one by taking the sum of each row and obtain $M_{ab}^{\text{lump}} = \delta_{ab} \sum_{c} M_{ac}.$

Weak Form Discretiza **Choosing Test Functions** $M_{ab}Q_{a|i}^{n}$

- Our discretization limit our solution
 - Test function can be chosen to generate d*n functions

Therefore, for \hat{a} traversing all sample points, and for $\hat{i} = 1, 2, ..., d$, we can respectively assign the test function

$$Q_{a|i}^n = \begin{cases} 1, & a \\ 0, & \text{ot} \end{cases}$$

to obtain *nd* equations

$$M_{\hat{a}b}A_{b|\hat{i}}^n = \int_{\partial\Omega^0} N_{\hat{a}}(\mathbf{X})T_{\hat{i}}(\mathbf{X},t^n)ds(\mathbf{X}) - \int_{\Omega^0} N_{\hat{a},j}(\mathbf{X})P_{\hat{i}j}(\mathbf{X},t^n)d\mathbf{X}.$$

ation

$$A_{b|i}^{n} = \int_{\partial\Omega^{0}} Q_{a|i}^{n} N_{a}(\mathbf{X}) T_{i}(\mathbf{X}, t^{n}) ds(\mathbf{X}) - \int_{\Omega^{0}} Q_{a|i}^{n} N_{a,j}(\mathbf{X}) P_{ij}(\mathbf{X}, t^{n}) ds(\mathbf{X}) ds(\mathbf{X}) + \int_{\Omega^{0}} Q_{a|i}^{n} N_{a,j}(\mathbf{X}) P_{ij}(\mathbf{X}, t^{n}) ds(\mathbf{X}) ds(\mathbf{X$$

-

 $= \hat{a}$ and $i = \hat{i}$ therwise

Weak Form Discretization **Time Discretization**

Discretization in time connects A to our DOF x. In the continuous setting, $\mathbf{A}(\mathbf{X},t) = \frac{\partial^2 \mathbf{x}}{\partial t^2}(\mathbf{X},t)$. Let us now split time into small intervals $t^0, t^2, ..., t^n, ...$ as mentioned in the first chapter of this book. With finite difference formula, we can conveniently approximate \mathbf{A} using \mathbf{x} , for example, with backward Euler,

$$egin{aligned} \mathbf{A}^n(\mathbf{X}) &= rac{\mathbf{V}^n(\mathbf{X}) - \mathbf{V}^{n-1}(\mathbf{X})}{t^n - t^{n-1}}, \ \mathbf{V}^n(\mathbf{X}) &= rac{\mathbf{x}^n(\mathbf{X}) - \mathbf{x}^{n-1}(\mathbf{X})}{t^n - t^{n-1}}, \end{aligned}$$

which gives us

$$\mathbf{A}^{n}(\mathbf{X}) = \frac{\mathbf{x}^{n}(\mathbf{X}) - (\mathbf{x}^{n-1}(\mathbf{X}) + h\mathbf{V}^{n-1}(\mathbf{X}))}{\Delta t^{2}}$$

where $\Delta t = t^n - t^{n-1}$. Applying this relation at the sample points

$$M_{\hat{a}b}\frac{x_{b|\hat{i}}^n - (x_{b|\hat{i}}^{n-1} + hV_{b|\hat{i}}^{n-1})}{\Delta t^2} = \int_{\partial\Omega^0} N_{\hat{a}}(\mathbf{X})T_{\hat{i}}(\mathbf{X}, t^n)ds(\mathbf{X}) - \int_{\Omega^0} N_{\hat{a},j}(\mathbf{X})P_{\hat{i}j}(\mathbf{X}, t^n)d\mathbf{X}$$

Different time discretization gives different time integration rules

Weak Form Discretization **Zero Traction Boundary Condition**

$$M_{\hat{a}b}\frac{x_{b|\hat{i}}^n - (x_{b|\hat{i}}^{n-1} + hV_{b|\hat{i}}^{n-1})}{\Delta t^2} = \int_{\partial\Omega^0} N_{\hat{a}}(\mathbf{X})T_{\hat{i}}(\mathbf{X}, t^n)ds(\mathbf{X}) - \int_{\Omega^0} N_{\hat{a},j}(\mathbf{X})P_{\hat{i}j}(\mathbf{X}, t^n)d\mathbf{X}$$

By applying mass lumping and zero traction boundary condition T(X, t) = 0, we get

$$M(x^{n+1} - (x^n + \Delta tv^n)) - \Delta t^2 f(x^{n+1}) = 0$$

$$-\int_{\Omega^0} N_{\hat{a}}$$

with elasticity force $f(x^{n+1})$ obtained by evaluating

 $V_{\hat{a},j}(\mathbf{X})P_{\hat{i}j}(\mathbf{X},t)d\mathbf{X}$.

Remarks

- Strong form: d-dimensional equation for arbitrary X
- Weak form: 1-dimensional equation for arbitrary Q
- Discrete weak form: 1-dimensional equation for arbitrary Qali
- Discrete form (after choosing $Q_{a|i}$): dn-dimensional equation (n is # of sample points)

- Discretization on the weak form:
 - FEM, MPM
- Directly discretize the strong form:
 - Finite difference method
 - Smoothed-particle hydrodynamics (SPH)

Next Lecture: Finite Element Discretization

- Evaluation of elasticity forces $-\int_{\Omega^0} N_{\hat{a},j}(\mathbf{X}) P_{\hat{i}j}(\mathbf{X},t) d\mathbf{X}$
- Boundary treatment

Image Sources

https://en.wikipedia.org/wiki/Stress%E2%80%93strain_curve