Instructor: Minchen Li

R(X,t)J(X,t) = R(X,0) Conservation of mass

oV
ot

R(X,0)—(X,t) = V*-P(X,t) + R(X,0)g Conservation of momentum

M(z" T — (2™ 4+ Ato™)) — At f(z™ ) =0

Lec 10: Governing Equations
15-769: Physically-based Animation of Solids and Fluids (F23)



Recap: Stress

» atensor field (like F) measuring pressure (unit: force per area)
* related to F through a constitutive relationship, e.g. neo-Hookean model

Definition (Hyperelastic Materials). Hyperelastic materials are
those elastic solids whose first Piola-Kirchoff stress P can be derived
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Calculation in the diagonal space (isotropic): P(F) = P(UXVT) = UP(2)VT = UPVT



Recap: Stress Derivative
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 Other ways to compute: Analytic Eigensystems for Isotropic Distortion Energies [Smith et al. 2019]
 Modes with negative Eigenvalues are directly projected out



Recap: Inversion-Free Elastodynamics




Strong Form

Definition

Definition (Strong Form). Letting V(X,t) = 8¢gf’t) = 8ng’t) be

the velocity defined over X, the equations are [Gonzalez and Stuart, 2008]
R(X,t)J(X,t) = R(X,0) Conservation of mass,

Vv
R(X, 0)88—t(x’ t)=V* .-P(X,t)+ R(X,0)g Conservation of momentum,

where X € Qy and t > 0. Here R is the mass density, J(X,t) =

det F(X,t), P is the first Piola-Kirchoff stress, and g is the constant grav-

itational acceleration. Note that J(X,0) = 1, and the mass conservation

can also be written as % (R(X,t)J(X,t)) =0.



Strong Form — Conservation of Mass

mass(B?) . mass(B?)
= lim
0 volume(Bt) e—»+0 [, dx

* Density: R(X,t) = lim

B! is the ball of radius ¢ surrounding an arbitrary X € Q'

« Conservation of Mass: B! is constant over time

* the material takes more or less space, but the amount (mass) won’t change

mass(B’) = J

R(X(X), t)dx = J
B

R(X, HJ(X, )dX = mass(Bg) = J R(X,0)dX
By

B/

5
€

VB cQ’andt >0

R(X,t)J(X,t) = R(X,0), VXecQ’andt>0

 Automatically satisfied in Lagrangian methods
* Needs to be explicitly considered in Eulerian methods



Strong Form — Conservation of Momentum

Traction

* [ypes of forces:
* body forces (or external forces, e.g. gravity)
» surface forces (or internal forces, which is stress-based, e.g. elasticity)

» defined via traction (force per area)

T(-,N, ) : Q° — R? is defined via the relation

forceg(BY) = /830 T (X, N)ds(X)

where N is the outward-pointing normal direction in the material space,
and forceg(B?) is the net force on an arbitrary BY exerted from material
outside 0B? on material inside BY.



Strong Form — Conservation of Momentum

Traction and Stress

e [raction

forces(BY) = /a TX,N)ds(X)

— the force per unit area(3D)/length(2D) that material in N* exerts on material in N~

(Internal forces inside B are self-balanced)

T(X,N)

\
N
» Stress (based on Cauchy’s Stress Theorem) -
(first Piola-Kirchoff stress) P(-,t) : QY — R4*4

T(X,N,t) = P(X, t)N.



Strong Form — Conservation of Momentum

Derivation — Applying Newton’s 2nd Law

Then, by applying Newton’s second law on B?, we can express the con-
servation of momentum as

/ R(X,0)2Y. (X, t)dX
. ot

_ / P (X, )N(X)ds(X) + / R(X, 0)A® (X, 1)dX,
& B B/
vV BY c Q° and t > 0.

Here we have added the contribution of external body force (such as
gravity) with its acceleration A®** to the change of momentum.



Strong Form — Conservation of Momentum

Derivation — Applying Divergence Theorem

/ R(X, O)%—Y(X,t)dx — [ P(X,t)N(X)ds(X) + / R(X,0)A%(X, t)dX
B? O B9 BO

vV BY c QY and t > 0.

Applying Divergence Theorem:

/ R(X, O)ﬁ—V(X,t)dX = V* . P(X,t)dX + / R(X,00A™(X,t)dX, VB c Q’and t >0
BO B/

ot -

Definition 16.2 (Divergence Theorem). For a vector-valued function
f(x) : © — R® defined on a closed domain €, let n(x) be the outward-
pointing normal on the boundary of this domain, the following equality

holds:
/ f - nds(x) :/ V - fdx. (16.13)
oS Q



Strong Form — Conservation of Momentum

Derivation — Extract the Integrand

v
/ R(X, 0)%(X,t)dx = [ VX.P(X,t)dX + / R(X,0)A™(X,t)dX, VB’ c Q° and t > 0
BY BY B?

Here the divergence operator V- acts on every row vector of \P in-
dependently and result in a column vector. Since Equation also
holds for arbitrary B?, we arrive at the strong form of the force balance
equation by removing the integration:

v
R(X, 0)%—t(x, t) = VX.P(X,t)+R(X,0)A™*(X,t), VX € andt> 0.



Weak Form Derivation

Applying Test Function RX 0)%7 (X, 1) = VX-P(X, )+ R(X, 00 A% (X.0), VX e andt> 0

Ignoring external force for simplicity

For arbitrary test function Q( - , 1) : Q¥ > R< compute the dot product to both sides and integrate

/ R(X,00Q(X,t) - A(X,t)dX = | Q(X,t)- (VX -P(X,t))dX,

V Q(,t): Q° - R% and t > 0.
Here we denote A(X,t) = %—Y(X, t).

— equivalent to strong form as it needs to hold for arbitrary ()
In index notation: / R(X,0) E Q:(X,1)A;(X,t)dX = / E Q:(X,1) E P;; i(X,t)dX.
Qo0 : 00 .
() 7 J

Duplicate indices for summation: / R(X,0)Q;:(X,t)A;(X,1)dX = Q:i(X, 1) F;; (X, t)dX.
Qo 0O



Weak Form Derivation
Applying Integration by Parts

R(X,0)Q;(X,t)A;(X,t)dX = [ Qi(X,t)P;; ;(X,t)dX

Now applying Integration By Parts on the right-hand side,

Qi(X, t)P,,;j,j (X, t)dX.
0O
(V- (Qi(X,)P;(X, 1)) — VQi(X, 1) - P;(X,1))dX
0O

/Qo ((QZ (X’ t)Pij(X’ t))7j o Qiaj (Xa t)Pz'j (X, t))dX

Definition 16.3 (Integration By Parts). For a scalar-valued function
u(x) and a vector-valued function (vector field) V(x), the product rule
for divergence states that

V- (ux)V(x)) =u(x)V - V() + Vu(x) - V(x). (16.19)

Integrating both sides on domain €2 then gives

/QV-(u(x)V(x))dx:/Qu(x)V-V(x)dx—F/ﬂVu(x)-V(x)dx. (16.20)



Weak Form Derivation
Applying Divergence Theorem

Then if we further apply divergence theorem on the first part of / (Q:(X, 1) P (X, 1)) — Qi (X,t)P;; (X, t))dX.
0O

/ R(X,0)Q;(X, ) A;(X, t)dX
QO

= | @K DP (X ON;(X)ds(X) — | Qu;(X,1)Py(X, )X

The quantity P;; N; would be specified as a boundary condition. If we
let T(X,t) be the boundary force per unit reference area (traction) with
T; = P;;N;, then we can say that the conservation of momentum implies

that VQ(-,%) : Q° — R?

/ R(X,0)0:(X, ) A; (X, £)dX

— Qz (Xa t)Tz (X, t)dS(X) — Qz‘,j (X, t)PZ] (X, t)dX
oo 0o



Weak Form Discretization

Spatial Sampling and Interpolation

Looking at a specific moment 1 = '
| BX)Qr(x)47 (X)dx
= Qi (X)T;"(X)ds(X) — Q §(X)Pi5(X)dX

o0

Given a set of sample points indexed by a or b in the simulation
domain, we can approximate the test function Q and the DOF x as

X tn ZQa|z tn ZQa|z
X tn beh be|sz

where Qa|z = q)i(t") refers to the i-th dimension of Q evaluated at

sample point a at time ", and N,(X) : 2° — R is the interpolation
function at sample point a.

Example in 1D:

— N1(z) — No(z) — N3(7) memf(x) =) ; f(z;)

1 2 3

N can be higher-order,
or globally supported.




Weak Form Discretization
Spatial Sampling and Interpolation (Cont.)

Qz X, tn ZQa|z tn ZQah

X tn beh belsz
= | Q@ (RTEX)ds(X) = | Qr;(X)Fij(X)dX

Then IO

(X, ) ZAW (t")Ny(X) = )~ Ap Ny (X)
b
/ R(X, 0)QM: Na(X) AJ:, Ny(X)dX
0o

| RX)Q ()47 (X)X

= | QuNLX)T(X,t")ds(X) — [ Q1iNag(X)Poy (X, £")dX.

al

020



Weak Form Discretization

Mass Matrix

/Qo R(X,0)Qg:Na(X)Ap; Np(X)dX

= | QuiNa(X)T(X,7)ds(X) ~ | QN (X) Py (X, £7)dX.

On the left-hand-side, we see that the sample values le and Ab|z are

in fact independent of the integration, so we can move them out of the
integral and obtain

aan|z 2|z
— Qi Na(X)T3(X, t™)ds(X) — alilVa,j (X) Pij (X, ")dX
Q0 QO
0 Remark 17.1. The mass matrix M (Equation 17.7) is symmetric pos-
itive semi-definite because it can be written as fQO BBTdX where B; =
where vV R(X,0)N;(X) so that 2T Mz = [.,(2TB)2dX > 0 for any vector z. In
M, = / R(X, O) N, (X) N, (X) dX pr?ctlce, this .ma,,s’s matrix may be 811.1gula,r. Therefore, we usu.ally apply
00 a “mass lumping” strategy to approximate the mass matrix with a diag-

onal and positive definite one by taking the sum of each row and obtain

is the mass matrix. :
M =06 >, Mye.




Weak Form Discretization

Choosing Test Functions M.Qp.4p, = |  QN.(X)Ti(X, t")ds(X) - QN (X) Py (X, ¢7)dX

o0

* Our discretization limit our solution space to the d*n interpolatlon functions

* Jest function can be chosen to generate d*n functions

Therefore, for 4 traversing all sample points, and for : = 1,2, ..., d, we can
respectively assign the test function

n | 1, a=aandi1=1
ali 0, otherwise

to obtain nd equations

Map AT

bli = No(X)T;(X,t")ds(X) — [ Na;(X)P(X,t")dX.

o0N° OO0



Weak Form Discretization

Time Discretization

Discretization in time connects A to our DOF x. In the continuous set-
ting, A(X,t) = %tg‘ (X,%). Let us now split time into small intervals
tV t2,...,t" ... as mentioned in the first chapter of this book. With fi-

nite difference formula, we can conveniently approximate A using x, for
example, with backward Euler,

V™ (X) — VP 1(X)

A™X) = —
n _ wn—1
V(X)) = = (}2 z{n—l (X), Different time discretization gives
B different time integration rules

which gives us

x"(X) — (x"H(X) + hV" (X))
At? ’

where At = t" — t"~1. Applying this relation at the sample points

A™(X) =

TR CHA RV
M, L i = [ Na(X)T (X, ) ds(X / Na;(X) P, (X, t")dX
A2 . oo



Weak Form Discretization

Zero Traction Boundary Condition

Ty — (@ RV
M&b L L — N&(X X tn dS / Na] X tn)dX
At? 500 Q0

By applying mass lumping and zero traction boundary condition T(X, 1) = 0, we get

M(z" ™ — (2™ + Atv™)) — At* f(z" 1) =0
with elasticity force f(x"*!) obtained by evaluating

o N&,j (X)P;,g (Xa t)dx
00



Remarks

e Strong form: d-dimensional equation for arbitrary X
 Weak form: 1-dimensional equation for arbitrary Q

* Discrete weak form: 1-dimensional equation for arbitrary Qaj;

* Discrete form (after choosing Qaji): dn-dimensional equation (n is # of sample points)

* Discretization on the weak form:
« FEM, MPM

» Directly discretize the strong form:
* Finite difference method

 Smoothed-particle hydrodynamics (SPH)



Next Lecture: Finite Element Discretization

* Evaluation of elasticity forces - / N; ;(X)P;, (X, t)dX
QAL

 Boundary treatment



Image Sources

o https://en.wikipedia.org/wiki/Stress%E2%80%93strain_curve



