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15-769: Physically-based Animation of Solids and Fluids (F23)
Lec 15: Fluid Simulation Fundamentals, SPH



Recap: Codimensional Solids — Thin Shells
Simulating Using Surface Meshes

Avoid Ill-conditioning:

Higher-order shape 
functions are expensive
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(a) Ideal Setting (b) Coarse Tessellation with Linear Basis

Avoid shear locking issue  
(linear shape functions):



Recap: Codimensional Solids — Thin Shells
Bending Energy
With only tangent space elasticity, no 
force under isometric deformation:

Model the strain energy for bending directly 
as a penalty of mean curvature changes

After discretization:

Garg et al. [2007]: 
For isometric deformation, 
A bending energy can be formulated as 
a cubic polynomial of x

Bergou et al. [2006]: 
For isometric deformation of plates (flat rest shapes), 
A bending energy can be formulated as  
a quadratic polynomial of x



Recap: Codimensional Solids — Thin Shells
Membrane Locking
Cloth are nearly unstretchable — stiff stretch resistance, E = ~107 Pa

With low-res triangulation, there can be 
geometric lockings:

Solution:  
Softer material parameters + Strain limiting

0.01x membrane stiffness + 10% strain limit Stiff membrane creates extra bending penalty 

(real material parameter)



Recap: Codimensional Solids — Thin Shells
Thickness Modeling
Using IPC: Elastic Thickness

Inelastic Thickness (Contact Gap)

Using prism elements and reduced 
integration [Chen et al. 2023]

̂d = 10mm̂d = 1mm



Recap: Codimensional Solids — Rods and Particles

Hair simulation [Huang et al. 2023]  based on 
Discrete Elastic Rod and MPM

Coupling codimension-0,1,2,3 solids using IPC



Today: Fluid Simulation
Fluid as a Special Kind of Solid
• Fluid: as a special kind of solid whose strain energy only penalizes volume 

change


• i.e. no resistance to volume-preserving shearing, nor rotation


• Dissipative effects can be modeled via viscosity

xn+1 = arg min
x

1
2

∥x − x̃n∥ + h2 ∑ P(x) e.g. Pfluid(x) = ∑
e

V0
e

κ
2

(det(Fe(x)) − 1)2

Frequent and large topology changes -> mesh quality gets really bad!

Frequent remeshing is not practical!



Simulating Fluids in Eulerian View using Particles
Use particles to track/represent fluid regions

(The particles are macroscopic markers, not molecules!)

Use shape functions directly defined in space (not on meshes)

Topology change gets easy!

Material-space shape functions can barely work:

Use world-space shape functions! (Eulerian view)*

*Using world-space shape functions in Eulerian simulation, the time integration is subject to CFL conditions.



Lagrangian v.s Eulerian View

Lagrangian view: 
Quantity measured  
at a point on the solid

Eulerian view: 
Quantity measured  
at a point in space

Material Space Ω0 World Space Ωt

x

Deformation Map ϕ
X = ϕ−1(x, t)

Q(X, t) = Q(ϕ−1(x, t), t) ≡ q(x, t)
— Push forward

Pull back:

q(x, t) = q(ϕ(X, t), t) ≡ Q(X, t)



Lagrangian v.s Eulerian View
The Material Derivative of Eulerian Quantities

X = ϕ−1(x, t)

Q(X, t) = Q(ϕ−1(x, t), t) ≡ q(x, t)Push forward: Pull back: q(x, t) = q(ϕ(X, t), t) ≡ Q(X, t)

a(x, t) =
Dv(x, t)

Dt
(Material Derivative)



Conservation of Momentum

Applying Divergence Theorem:

Newton’s 2nd Law on :B0
ϵ

Lagrangian View:

Push forward and extract the integrand

ρ(x, t)
Dv
Dt

(x, t) = ∇x ⋅ σ(x, t) + ρ(x, t)gEulerian View:

Cauchy stress: σ =
1
J

PFT dX =
1
J

dx



Inviscid Navier-Stoke’s Equation

P =
∂Ψ
∂F

=
∂Ψ
∂J

∂J
F

= κ(J − 1)JF−T

σ =
1
J

PFT = κ(J − 1)I = − pI  is called Pressurep = −
∂Ψ
∂J

ρ(x, t)
Dv
Dt

(x, t) = ∇x ⋅ σ(x, t) + ρ(x, t)gMomentum Conservation (Eulerian View):

ρ
Dv
Dt

= − ∇x p + ρg — Euler Equation

How is Cauchy stress modeled?

Consider a fluid constitutive model,  e.g.   Ψfluid(F) =
κ
2

(det(F) − 1)2

— Navier Stoke’s Equation (Inviscid)



Incompressibility

How large should  be?κ

Consider a fluid constitutive model,  e.g.   Ψfluid(F) =
κ
2

(det(F) − 1)2

(en.wikipedia.org/wiki/Bulk_modulus)

Very stiff!

 is called bulk modulus, similar to Young’s modulus for solidsκ

What if we model volume-preserving 
fluids using equality constraints?
d
dt

V(Bt
ϵ) = ∫∂Bt

ϵ

v ⋅ ndx = 0 ∀Bt
ϵ ∈ Ωt

Applying divergence theorem:

∇ ⋅ v = 0∫Bt
ϵ

∇ ⋅ vdx = 0 ∀Bt
ϵ ∈ Ωt

Incompressible Navier-Stoke’s 
Equation (Inviscid): Solving the KKT is still hard, 

But magic tricks can be applied!Lagrange 
multiplier 
term

http://en.wikipedia.org/wiki/Bulk_modulus


Viscosity
Can be viewed as fluid friction — penalizing stretching and shearing motion

Newtonian fluids: σviscosity = 2μD + λtr(D)IStrain rate tensor:  D =
1
2

(∇v + ∇vT)

ρ(x, t)
Dv
Dt

(x, t) = ∇x ⋅ σ(x, t) + ρ(x, t)g Newtonian fluids: σ = − pI + μ(∇v + ∇vT) + λtr(D)I

∇ ⋅ (μ(∇v + ∇vT)) = μ(∇ ⋅ ∇v + ∇ ⋅ (∇v)T)

 for incompressible fluidstr(D) = ∇ ⋅ v = 0

∇ ⋅

∂v
∂x1

T

∂v
∂x2

T

∂v
∂x3

T

=

∂
∂x1

∑i
∂vi

∂xi

∂
∂x2

∑i
∂vi

∂xi

∂
∂x3

∑i
∂vi

∂xi

  
  for incompressible fluids
= ∇(∇ ⋅ v) = 0

Incompressible Navier-Stoke’s Equation



Time Splitting
Incompressible Navier-Stoke’s Equation

Solve  (advection)ua ←
∂u
∂t

+ u ⋅ ∇u = 0

Solve  (apply external force)ub ←
∂u
∂t

= g

Solve  (diffusion)uc ←
∂u
∂t

= ν∇ ⋅ ∇u

Solve  (pressure projection)un+1 ← ∇ ⋅ u = 0

For each time step :n

Consider a generic ODE:

Explicit time integration with splitting:

Explicit Euler With constraint view, this step is stable!



W

Discretization using particles:

The Smoothed Particle Hydrodynamics (SPH) Method
A Brief Introduction

The kernel needs to involve a large number 
of neighbors for accurate estimation!

Given a field  and a smoothing kernel function , e.g. GaussianA W

A smoother version of  as an approximation of it isA

Favored properties of :W



A Brief Introduction to SPH
To solve the incompressible Navier-Stoke’s Equation

Just need to approximate the differential operators, 
And relate velocity to pressure via constitutive models

Direct discretization are not accurate 
and can lead to instability:

Difference and symmetric 
formula are often used:



A Brief Introduction to SPH
To solve the incompressible Navier-Stoke’s Equation

Just need to approximate the differential operators, 
And relate velocity to pressure via constitutive models

Relate velocity to pressure via state equation:

p = −
∂Ψ
∂J

e.g.  for p = − κ(J − 1) Ψ =
κ
2

(J − 1)2

— Weakly-Compressible SPH, or WCSPH

Handling pressure term by 
solving :∇ ⋅ u = 0

• Implicit Imcompressible SPH 
(IISPH)

• Divergence-Free SPH 
(DFSPH)



A Brief Introduction to SPH
To solve the incompressible Navier-Stoke’s Equation

Just need to approximate the differential operators, 
And relate velocity to pressure via constitutive models

CFL condition:

— All particles are only allowed to move less 
than the particle diameter per time step for λ = 1

Use ghost particles to 
represent solids/air:

This also avoids density 
underestimation.



Demo!
interactivecomputergraphics.github.io/physics-simulation



More on SPH

SPH solids [Peer et al. 2018]

Micropolar SPH [Bender et al. 2017] 
(particle with self-rotation)

Multiphase Fluids [Ren et al. 2014]

Optimization-based SPH [Xie et al. 2023]



Next Lecture: Hybrid Lagrangian/Eulerian Methods



Next Week

• Nov 14: Paper Presentation


• Chen et al. SIERE: A Hybrid Semi-Implicit Exponential Integrator for Efficiently 
Simulating Stiff Deformable Objects. ToG 2020 (Presenter: Kevin You)


• Wolper et al. CD-MPM: Continuum Damage Material Point Methods for Dynamic 
Fracture Animation. SIGGRAPH 2018 (Presenter: Shilin Ma)


• Nov 16: Paper Presentation


• Sharp et al. Data-Free Learning of Reduced-Order Kinematics. SIGGRAPH 
2023 (Presenter: Zoë Marschner)


• Sperl et al. Homogenized Yarn-Level Cloth. SIGGRAPH 2020 (Presenter: Sarah Di)



Image Sources

• http://multires.caltech.edu/pubs/ds.pdf


• https://www.youtube.com/watch?v=UDQaw4Ff3sg


• https://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics


• https://sph-tutorial.physics-simulation.org/

http://multires.caltech.edu/pubs/ds.pdf
https://www.youtube.com/watch?v=UDQaw4Ff3sg
https://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics
https://sph-tutorial.physics-simulation.org/

