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Lec 15: Fluid Simulation Fundamentals, SPH
15-769: Physically-based Animation of Solids and Fluids (F23)




Recap: Codimensional Solids — Thin Shells

Simulating Using Surface Meshes

Avoid llI-conditioning:

_

Tangential stretch
Tangentlal stretch and Shearlng

/ \ shearing
Avoid shear locking issue —/ACT
B4

(linear shape functions): s
Tangentlal Tangential \
compression compression

(a) Ideal Setting (b) Coarse Tessellation with Linear Basis




Recap: Codimensional Solids — Thin Shells
Bending Energy

With only tangent space elasticity, no Model the strain energy for bending directly
force under isometric deformation: as a penalty of mean curvature changes

. * i [ (H o @ — H)?dA

After discretization:

3||e:] | 712 E¢’
!pbend(x) — Zk Az (9’6 o 0’6) k= 24(1 o 1/2)

Garg et al. [2007]: Bergou et al. [2006]:
For isometric deformation, For isometric deformation of plates (flat rest shapes),
A bending energy can be formulated as A bending energy can be formulated as

a cubic polynomial of x a quadratic polynomial of x



Recap: Codimensional Solids — Thin Shells

Membrane Locking

Cloth are nearly unstretchable — stiff stretch resistance, E = ~107 Pa

With low-res triangulation, there can be Solution:
geometric lockings: Softer material parameters + Strain limiting

Stiff membrane creatgs extra bending penaity 0.01x membrane stiffness + 10% strain limit
(real material parameter)



Recap: Codimensional Solids — Thin Shells

Thickness Modeling
Using IPC:

Elastic Thickness
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d = 1lmm = 10mm
Inelastic Thickness (Contact Gap) - =
R e e
Usmg prlsm ele - nts and reduced

mtegratlon [Chen—et al 2023] : ':;-7



Recap: Codimensional Solids — Rods and Particles
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Hair simulation [Huang et al. 2023] based on
Discrete Elastic Rod and MPM

Coupling codimension-0,1,2,3 solids using IPC



Today: Fluid Simulation
Fluid as a Special Kind of Solid

* Fluid: as a special kind of solid whose strain energy only penalizes volume
change

* |.e. no resistance to volume-preserving shearing, nor rotation

» Dissipative effects can be modeled via viscosity
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n+l _ N —Ily — ¥ 2 — 0 —1)?
X" = arg min —lx — 2 + ) P(x) eg. Ppifx) = ), V. 5 (det(F (x) — 1)

Frequent and large topology changes ->



Simulating Fluids in Eulerian View using Particles

Use particles to track/represent fluid regions

(The particles are macroscopic markers, not molecules!)

Use shape functions directly defined in space (hot on meshes)

Topology change gets easy!

Material-space shape functions can barely work:

Use world-space shape functions! (Eulerian view)*

*Using world-space shape functions in Eulerian simulation, the time integration is subject to CFL conditions.



Lagrangian v.s Eulerian View

Deformation Map ¢

X = ¢ (x,1)
QX,n =Q(p~'(x,0),1) = q(x,1)

— Push forward
Pull back:

Material Space Q" World Space Q' qx,1) = q(@dp(X,1),1) = Q(X, 1)
x = x(X, t)

Lagrangian view: Eulerian view:
Quantity measured Quantity measured
at a point on the solid at a point in space



Lagrangian v.s Eulerian View

The Material Derivative of Eulerian Quantities
x =x(X,t) =¢(X,t) X=¢ '(x,1)

Push forward: Q(X,7) = Q¢ '(x,1),1) = q(x, 1) Pull back: q(X,?) = q(¢(X,1),1) = Q(X, 1)

ob

VO = 50 A1) = 2VX,1) = T (0(X,1), 1) + oo (&, 1), 1) 2 (X, 1),

A(X,t) = %g( 1) = %\t/(x t). . , , , ‘\
AX ) = S VA(X) = S G(X, 1), 1)+ o (X, ), 1) S (X, 1)

v(x,t) = V(o' (x,1),1), |

a(x, t) =A(¢~'(x,1),1). ai(x,t) = A (0 (x,t),t) = aa\;‘ (x,1) - gz: x, t)v;(x, t) /

V(X,t) = X, t),t), - ;

AEX, 3 _ Z(((:;((X,i)),?). ai(x,t) # %(x,t). a(x, 1) = DVI(; ) (Material Derivative)




Conservation of Momentum

oV

Lagrangian View: R(X, O)W(X’t) = VX.P(X,t) + R(X,0)g
Newton’s 2nd Law on Bg:
/B R(X, 0)%(X, t)dX = - P(X,t)N(X)ds(X) + /B R(X,0A°(X, t)dX, ¥ B° c Q° and ¢ > 0.
Ap;alying Divergence Theorem:e |
/BO R(X, O)Z—Y(X’ ax = | VX.P(X,t)dX + /B R(X,0A™(X,t)dX, ¥ BYC 0 and ¢ >0

* Push forward and extract the integrand

Dv
Eulerian View:  p(X, t)E(X, =V oX 1)+ pX,1)g

1 0Q; 0g; 0x 1
- —_— — T s 4 = L — L k — : : —_— —
Cauchy stress: 0 = JPF Qi; 0X; 9w X, di kFi- dX de




Inviscid Navier-Stoke’s Equation

How is Cauchy stress modeled?

Consider a fluid constitutive model, e.g. Yy, /(F) = g(det(F) — 1)
oY oY oJ
P — —

= = =x(J - 1)JF !
ok odJ F
| oY
o = 7PF =x(J— DIl =—-pI p=— FY; is called Pressure

Dv
Momentum Conservation (Eulerian View): p(X, I)E(X, ) =V'-0x,1)+ pX,1)g

¥

pF = —V,.p+pg  — Euler Equation
[ L,
8 — —
— Navier Stoke’s Equation (Inviscid) - U - Vu

1
ot 0




Incompressibility

K
Consider a fluid constitutive model, e.g. ¥,,(F) = E(det(F) — 1)?
K Is called bulk modulus, similar to Young’s modulus for solids

How large should « be? Water 2.2 GPa

(en.wikipedia.org/wiki/Bulk _modulus)

What if we model volume-preserving
fluids using equality constraints?

d
—V(B£)=J v-ndx=0 VB e 0 J V-vdix=0 VBl . eQ 0 V.v=0
oB Bt

dt 6

Applying divergence theorem:
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Incompressible Navier-Stoke’s 57 - 1 -
I iscid): | U - 'L_l:‘|‘ — VD|— §
Equation (Inviscid) ot p Solving the KKT is still hard,
V. =0 Lagrange But magic tricks can be applied!
I multiplier

term


http://en.wikipedia.org/wiki/Bulk_modulus

Viscosity

Can be viewed as fluid friction — penalizing stretching and shearing motion

Strain rate tensor: D = 5( Vv + Vv') Newtonian fluids: 6,,.,;,, = 2¢D + Atr(D)]
Dv
p(X, t)E(X’ ) = V" -0o(X,1) + p(X,1)g Newtonian fluids: 6 = — pI + u(Vv + Vv!) + itr(D)I

tr(D) = V - v = 0 for incompressible fluids

V- (u(VV+ VYD) = u(V-Vv+|V-(VV))

ov?! R I Incompressible Navier-Stoke’s Equation
0)61 axl i@xl- -
r 0 ov ou Fu - Vu + 1V g+ vV -Vu
N A I R St L V) = U VUT —Vp=gTVV " VU,
V aX2 o ze iaxi \/(\/ V) O 8t p

for iIncompressible fluids -

0)63 0)63 l a.xl'



Time Splitting

Incompressible Navier-Stoke’s Equation

. . _ 8—' 1

Consider a generic ODE: U @ Vi+ -Vp=g+vV-Vi
% _ f(g) + 9(a) ”
g~ T V-i=0.

Explicit time integration with splitting:
For each time step n:

q=q" +Atf(q"), ) ou _
¢! = G+ Atg(§). u“ < Solve = u - Vu = 0 (advection)
ou
¢" = (¢" + Atf(q™)) + Atg(q™ + Atf(q™)) u” < Solve — = g (apply external force)
=q" +Atf(g") + At (g(g") + O(A?)) u
= ¢" + At(f(q") + g(q™)) + O(At?) u* < Solve = = vV - Vu (diffusion)
d
=|q" + d_zAt + O(Atz). "« Solve V - u = 0 (pressure projection)b
Explicit Euler

With constraint view, this step is stable!



The Smoothed Particle Hydrodynamics (SPH) Method

A Brief Introduction

Given a field A and a smoothing kernel function W, e.g. Gaussian

A smoother version of A as an approximation of it is
AX) = (AxW)( /A W(x — x’,h)dv’
Favored properties of W:
/]Rd W(r’,h)dv/ =1

lim W( h ) = 9(r) (Dirac-9 condition)
h'—0

(normalization condition)

W(r,h) >0 (positivity condition)
W(r,h) = W(—r,h)

(symmetry condition)

W(r,h) =0 for ||r|| > h,

(compact support condition)
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Discretization using particles:

AxW)x) = [

ZA

jeF

W(x —x, h) " (x’) dv’

Pj

N——

dm’

W(x; —x;,h) = (A(x;))



A Brief Introduction to SPH

To solve the incompressible Navier-Stoke’s Equation

ou Vi 4 le _F+ V- Vi, Difference and symmetric
ot 0 formula are often used:
V-u=0.

Just need to approximate the differential operators, VA; ~ (VAi) —Ai(V1)

And relate velocity to pressure via constitutive models
yIoP = Z (Aj—A)ViW;;.

Direct discretization are not accurate

and can lead to instability: A A
VA p 25 (vp)+ (7 (50))
VA,'~Z ]A i Q@ VW;; P; i
Pj A A
| =pi )} mj| = - ViWi; .
V'Ai“Z&AJ'VWU . (P? p?) ’

ij



A Brief Introduction to SPH

To solve the incompressible Navier-Stoke’s Equation
ou
ot

1
- Vil + S Vp =G+ vV - Vi,

V-u=0.

Just need to approximate the differential operators,
And relate velocity to pressure via constitutive models

Relate velocity to pressure via state equation:

p = o¥ e.g.p=—1<(]—1)for‘I’=§(J—1)2

oJ

— Weakly-Compressible SPH, or WCSPH

Handling pressure term by
solving V - u = 0:

* Implicit Imcompressible SPH
(IISPH)

* Divergence-Free SPH
(DFSPH)



A Brief Introduction to SPH

To solve the incompressible Navier-Stoke’s Equation
ou
ot

1
| ﬂ-Vﬂ'-l—;Vp:g'—l—z/V-Vﬁ,
V-ii=0.

Just need to approximate the differential operators,
And relate velocity to pressure via constitutive models

~y

h

[vmex |

CFL condition: Ar < A

— All particles are only allowed to move less
than the particle diameter per time step for A = 1

Use ghost particles to
represent solids/air:

sssee

“ 900®
- 000®

This also avoids density
underestimation.




Demo!

interactivecomputergraphics.github.io/physics-simulation



More on SPH

AT
e ™

rag we

(3

Micropolar SPH [Bender et al. 2017]
Optimization-based SPH [Xie et al. 2023 particle with self-rotation)

diffusion disabled diffusion enabled

=235 =235

t=6.05 t=6.05s

Multiphase Fluids [Ren et al. 2014] SPH solids [Peer et al. 2018]




Next Lecture: Hybrid Lagrangian/Eulerian Methods




Next Week

 Nov 14: Paper Presentation

 Chen et al. SIERE: A Hybrid Semi-Implicit Exponential Integrator for Efficiently
Simulating Stiff Deformable Objects. ToG 2020 (Presenter. Kevin You)

 Wolper et al. CD-MPM: Continuum Damage Material Point Methods for Dynamic
Fracture Animation. SIGGRAPH 2018 (Presenter: Shilin Ma)

 Nov 16: Paper Presentation

« Sharp et al. Data-Free Learning of Reduced-Order Kinematics. SIGGRAPH
2023 (Presenter: Zoeé Marschner)

o Sperl et al. Homogenized Yarn-Level Cloth. SIGGRAPH 2020 (Presenter: Sarah Di)



Image Sources

e http://multires.caltech.edu/pubs/ds.pdf

o https://www.youtube.com/watch?v=UDQaw4Ff3sg

o https:.//en.wikipedia.org/wiki/Smoothed-particle hydrodynamics

o https://sph-tutorial.physics-simulation.org/



http://multires.caltech.edu/pubs/ds.pdf
https://www.youtube.com/watch?v=UDQaw4Ff3sg
https://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics
https://sph-tutorial.physics-simulation.org/

