Instructor: Minchen Li

$$
\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} + \frac{1}{\rho} \nabla p = \vec{g} + \nu \nabla \cdot \nabla \vec{u},
$$

$$
\nabla \cdot \vec{u} = 0.
$$

15-769: Physically-based Animation of Solids and Fluids (F23) Lec 15: Fluid Simulation Fundamentals, SPH

Recap: Codimensional Solids — Thin Shells Simulating Using Surface Meshes

Tangential stretch

Avoid Ill-conditioning:

Higher-order shape functions are expensive

A

Avoid shear locking issue (linear shape functions):

Recap: Codimensional Solids — Thin Shells Bending Energy

With only tangent space elasticity, no force under isometric deformation:

Model the strain energy for bending directly as a penalty of mean curvature changes

$$
\int_{\bar{\Omega}} (H \circ \varphi - \bar{H})^2 d\bar{A}
$$
\n
$$
k = \frac{E\xi^3}{24(1 - \nu^2)}
$$
\n

After discretization:

$$
\varPsi_{\rm bend}(x)=\sum_i k\frac{3||\bar{e}_i||^2}{\bar{A}_i}(\theta_i-\bar{\theta}_i)^2
$$

Garg et al. [2007]: For isometric deformation, A bending energy can be formulated as a cubic polynomial of *x*

Bergou et al. [2006]: For isometric deformation of plates (flat rest shapes), A bending energy can be formulated as a quadratic polynomial of *x*

Recap: Codimensional Solids — Thin Shells Membrane Locking

Cloth are nearly unstretchable — stiff stretch resistance, E = ~107 Pa

With low-res triangulation, there can be geometric lockings:

Stiff membrane creates extra bending penalty $\frac{0.01x}{x}$ membrane stiffness + 10% strain limit (real material parameter)

Solution: Softer material parameters + **Strain limiting**

Recap: Codimensional Solids — Thin Shells Thickness Modeling

Using IPC: Elastic Thickness

Inelastic Thickness (Contact Gap)

Using prism elements and reduced integration [Chen et al. 2023]

$$
\hat{d}=1mm
$$

 $\hat{d} = 10$ mm

Recap: Codimensional Solids — Rods and Particles

Hair simulation [Huang et al. 2023] based on Discrete Elastic Rod and MPM

Coupling codimension-0,1,2,3 solids using IPC

Today: Fluid Simulation Fluid as a Special Kind of Solid

- Fluid: as a special kind of solid whose strain energy only penalizes volume change
	- i.e. no resistance to volume-preserving shearing, nor rotation
	- Dissipative effects can be modeled via viscosity

$$
x^{n+1} = \arg\min_{x} \frac{1}{2} ||x - \tilde{x}^n|| + h^2 \sum P(x)
$$

$$
\sum P(x) \qquad \qquad \textbf{e.g. } P_{fluid}(x) = \sum_{e} V_e^0 \frac{\kappa}{2} (\det(\mathbf{F}_e(x)) - 1)^2
$$

- **Frequent and large topology changes -> mesh quality gets really bad!**
	- **Frequent remeshing is not practical!**

Simulating Fluids in Eulerian View using Particles

Use particles to track/represent fluid regions

(The particles are macroscopic markers, not molecules!)

Use shape functions directly defined in space (not on meshes)

Topology change gets easy!

Material-space shape functions can barely work:

Use world-space shape functions! (Eulerian view)*

*Using world-space shape functions in Eulerian simulation, the time integration is subject to CFL conditions.

Lagrangian v.s Eulerian View

Lagrangian view: Quantity measured at a point on the solid

Eulerian view: Quantity measured at a point in space

 $\mathbf{X} = \boldsymbol{\phi}^{-1}(\mathbf{x}, t)$ $Q(X, t) = Q(\phi^{-1}(x, t), t) \equiv q(x, t)$ **— Push forward**

Material Space Ω^0 **World Space** Ω^t

$$
\mathbf{x} = \mathbf{x}(\mathbf{X},t) = \phi(\mathbf{X},t)
$$

Pull back:

 $\mathbf{q}(\mathbf{x}, t) = \mathbf{q}(\phi(\mathbf{X}, t), t) \equiv \mathbf{Q}(\mathbf{X}, t)$

Lagrangian v.s Eulerian View The Material Derivative of Eulerian Quantities

 $\mathbf{X} = \boldsymbol{\phi}^{-1}(\mathbf{x}, t)$

Push forward: $Q(X, t) = Q(\phi^{-1}(x, t), t) \equiv q(x)$

$$
V(X,t) = \frac{\partial \phi}{\partial t}(X,t)
$$

\n
$$
A(X,t) = \frac{\partial^2 \phi}{\partial t^2}(X,t) = \frac{\partial V}{\partial t}(X,t).
$$

\n
$$
A(X,t) = \frac{\partial^2 \phi}{\partial t^2}(X,t) = \frac{\partial V}{\partial t}(X,t).
$$

\n
$$
A_i(X,t) = \frac{\partial}{\partial t}V(X,t) = \frac{\partial V}{\partial t}(\phi(X,t),t) + \frac{\partial V}{\partial x}(\phi(X,t),t) \frac{\partial \phi}{\partial t}(X,t).
$$

\n
$$
v(x,t) = V(\phi^{-1}(x,t),t).
$$

\n
$$
a_i(x,t) = A_i(\phi^{-1}(x,t),t) = \frac{\partial V_i}{\partial t}(x,t) + \frac{\partial V_i}{\partial x_j}(x,t) \frac{\partial \phi_j}{\partial t}(X,t).
$$

\n
$$
V(X,t) = v(\phi(X,t),t),
$$

\n
$$
A(X,t) = a(\phi(X,t),t).
$$

\n
$$
A_i(x,t) = A_i(\phi^{-1}(x,t),t) = \frac{\partial V_i}{\partial t}(x,t) + \frac{\partial V_i}{\partial x_j}(x,t) \frac{\partial V_i}{\partial t}(X,t)
$$

\n
$$
A(X,t) = a(\phi(X,t),t).
$$

$$
V(X,t) = \frac{\partial \phi}{\partial t}(X,t)
$$

\n
$$
A(X,t) = \frac{\partial^2 \phi}{\partial t^2}(X,t) = \frac{\partial V}{\partial t}(X,t).
$$

\n
$$
A(X,t) = \frac{\partial^2 \phi}{\partial t^2}(X,t) = \frac{\partial V}{\partial t}(X,t).
$$

\n
$$
A_i(X,t) = \frac{\partial}{\partial t}V_i(X,t) = \frac{\partial v_i}{\partial t}(\phi(X,t),t) + \frac{\partial v_i}{\partial x}(\phi(X,t),t) \frac{\partial \phi_j}{\partial t}(X,t).
$$

\n
$$
v(x,t) = V(\phi^{-1}(x,t),t).
$$

\n
$$
a_i(x,t) = A_i(\phi^{-1}(x,t),t) = \frac{\partial v_i}{\partial t}(x,t) + \frac{\partial v_i}{\partial x_j}(x,t)v_j(x,t)
$$

\n
$$
V(X,t) = v(\phi(X,t),t),
$$

\n
$$
A(X,t) = a(\phi(X,t),t).
$$

\n
$$
a_i(x,t) \neq \frac{\partial v_i}{\partial t}(x,t).
$$

\n
$$
a_i(x,t) \neq \frac{\partial v_i}{\partial t}(x,t).
$$

\n
$$
a_i(x,t) \neq \frac{\partial v_i}{\partial t}(x,t).
$$

\n
$$
a_i(x,t) = \frac{Dv(x,t)}{Dt}
$$

\n
$$
(Material Derivative)
$$

$$
V(X,t) = \frac{\partial \phi}{\partial t}(X,t)
$$

\n
$$
A(X,t) = \frac{\partial^2 \phi}{\partial t^2}(X,t) = \frac{\partial V}{\partial t}(X,t).
$$

\n
$$
A(X,t) = \frac{\partial^2 \phi}{\partial t^2}(X,t) = \frac{\partial V}{\partial t}(X,t).
$$

\n
$$
A_i(X,t) = \frac{\partial}{\partial t}V_i(X,t) = \frac{\partial v_i}{\partial t}(\phi(X,t),t) + \frac{\partial v_i}{\partial x}(\phi(X,t),t) \frac{\partial \phi_j}{\partial t}(X,t).
$$

\n
$$
v(x,t) = V(\phi^{-1}(x,t),t).
$$

\n
$$
a_i(x,t) = A_i(\phi^{-1}(x,t),t) = \frac{\partial v_i}{\partial t}(x,t) + \frac{\partial v_i}{\partial x_j}(x,t)v_j(x,t)
$$

\n
$$
V(X,t) = v(\phi(X,t),t),
$$

\n
$$
A(X,t) = a(\phi(X,t),t).
$$

\n
$$
a_i(x,t) \neq \frac{\partial v_i}{\partial t}(x,t).
$$

\n
$$
a_i(x,t) \neq \frac{\partial v_i}{\partial t}(x,t).
$$

\n
$$
a_i(x,t) \neq \frac{\partial v_i}{\partial t}(x,t).
$$

\n
$$
a_i(x,t) = \frac{Dv(x,t)}{Dt}
$$

\n
$$
(Material Derivative)
$$

$$
\mathbf{x}, t
$$
 Full back: $\mathbf{q}(\mathbf{x}, t) = \mathbf{q}(\phi(\mathbf{X}, t), t) \equiv \mathbf{Q}(\mathbf{X}, t)$

Conservation of Momentum

Applying Divergence Theorem:

Newton's 2nd Law on B_{ϵ}^0 : *ϵ*

$$
\int_{B_{\epsilon}^0} R(\mathbf{X},0) \frac{\partial \mathbf{V}}{\partial t}(\mathbf{X},t) d\mathbf{X} = \int_{\partial B_{\epsilon}^0} \mathbf{P}(\mathbf{X},t) \mathbf{N}(\mathbf{X}) ds(\mathbf{X}) + \int_{B_{\epsilon}^0} R(\mathbf{X},0) \mathbf{A}^{\text{ext}}(\mathbf{X},t) d\mathbf{X}, \quad \forall B_{\epsilon}^0 \subset \Omega^0 \text{ and } t \ge 0
$$

Lagrangian View:

$$
R(\mathbf{X},0)\frac{\partial \mathbf{V}}{\partial t}(\mathbf{X},t) = \nabla^{\mathbf{X}}\cdot \mathbf{P}(
$$

$$
\int_{B_{\epsilon}^{0}} R(\mathbf{X}, 0) \frac{\partial \mathbf{V}}{\partial t}(\mathbf{X}, t) d\mathbf{X} = \int_{B_{\epsilon}^{0}} \nabla^{\mathbf{X}} \cdot \mathbf{P}(\mathbf{X}, t) d\mathbf{X} + \int_{B_{\epsilon}^{0}} R(\mathbf{X}, 0) \mathbf{A}^{\text{ext}}(\mathbf{X}, t) d\mathbf{X}, \quad \forall B_{\epsilon}^{0} \subset \Omega^{0} \text{ and } t \ge 0
$$
\nPush forward and extract the integrand

\nEulerian View:

\n
$$
\rho(\mathbf{x}, t) \frac{D \mathbf{v}}{Dt}(\mathbf{x}, t) = \nabla^{\mathbf{x}} \cdot \sigma(\mathbf{x}, t) + \rho(\mathbf{x}, t) \mathbf{g}
$$
\nCauchy stress:

\n
$$
\sigma = \frac{1}{J} \mathbf{P} \mathbf{F}^{T} \qquad Q_{i,j} = \frac{\partial Q_{i}}{\partial X_{j}} = \frac{\partial q_{i}}{\partial x_{k}} \frac{\partial x_{k}}{\partial X_{j}} = q_{i,k} F_{kj}, \qquad d\mathbf{X} = \frac{1}{J} d\mathbf{x}
$$

 $(\mathbf{X},t)+R(\mathbf{X},0)\mathbf{g}$

Inviscid Navier-Stoke's Equation

$$
\sigma = \frac{1}{J} \mathbf{P} \mathbf{F}^T = \kappa (J - 1) \mathbf{I} = - pI \qquad p = -\frac{\partial \Psi}{\partial J}
$$

Momentum Conservation (Eulerian View): $\rho(\mathbf{x}, t) - \frac{\rho(\mathbf{x}, t)}{\rho(\mathbf{x}, t)} = \nabla^{\mathbf{x}} \cdot \sigma(\mathbf{x}, t) + \rho(\mathbf{x}, t)$ g *ρ D***v** *Dt* $\nabla_{\mathbf{x}} p + \rho \mathbf{g}$ – Euler Equation

PF*^T* = *κ*(*J* − 1)**I** = − *pI p* = − **is called Pressure**

$$
f(t, t) = \frac{D\mathbf{v}}{Dt}(\mathbf{x}, t) = \nabla^{\mathbf{x}} \cdot \sigma(\mathbf{x}, t) + \rho(\mathbf{x}, t) \mathbf{g}
$$

$$
\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} + \frac{1}{\rho} \nabla p = \vec{g}
$$

How is Cauchy stress modeled?

Consider a fluid constitutive model, e.g. Ψ_{fluid}

 $P =$ ∂Ψ ∂**F** = ∂Ψ ∂*J* ∂*J* **F** $= \kappa (J - 1) J \mathbf{F}^{-T}$

$$
(\mathbf{F}) = \frac{\kappa}{2} (\det(\mathbf{F}) - 1)^2
$$

— Navier Stoke's Equation (Inviscid)

Incompressibility

Consider a fluid constitutive model, e.g. Ψ_{fluid} (

How large should *κ* **be?**

Water

2.2 GPa **Very stiff!**

$$
(\mathbf{F}) = \frac{\kappa}{2} (\det(\mathbf{F}) - 1)^2
$$

(en.wikipedia.org/wiki/Bulk_modulus)

κ **is called bulk modulus, similar to Young's modulus for solids**

What if we model volume-preserving fluids using equality constraints?

$$
\frac{d}{dt}V(B_{\epsilon}^{t}) = \int_{\partial B_{\epsilon}^{t}} \mathbf{v} \cdot \mathbf{n} d\mathbf{x} = 0 \quad \forall B_{\epsilon}^{t} \in \Omega^{t}
$$

Applying divergence theorem:

$$
\int_{B_{\epsilon}^{t}} \nabla \cdot \mathbf{v} d\mathbf{x} = 0 \quad \forall B_{\epsilon}^{t} \in \Omega^{t} \quad \nabla \cdot \mathbf{v} = 0
$$

Incompressible Navier-Stoke's

Incompressible Navier-Stoke's	$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} + \frac{1}{\rho} \nabla p = \vec{g}$	Solving the KKT is still hard,
$\nabla \cdot \vec{u} = 0$	Lagrange	But magic tricks can be apply

multiplier term

But magic tricks can be applied!

Viscosity

Can be viewed as fluid friction — penalizing stretching and shearing motion

Strain rate tensor: $\mathbf{D} = \frac{1}{2}(\nabla \mathbf{v} + \nabla \mathbf{v}^T)$ **Newtonian fluids:** σ $\frac{1}{2}(\nabla \mathbf{v} + \nabla \mathbf{v}^T)$ **Newtonian fluids:** $\sigma_{viscosity} = 2\mu \mathbf{D} + \lambda \mathbf{tr}(\mathbf{D})\mathbf{I}$ 2 $(\nabla \mathbf{v} + \nabla \mathbf{v}^T)$

$$
\rho(\mathbf{x}, t) \frac{D\mathbf{v}}{Dt}(\mathbf{x}, t) = \nabla^{\mathbf{x}} \cdot \sigma(\mathbf{x}, t) + \rho(\mathbf{x}, t) \mathbf{g}
$$

Incompressible Navier-Stoke's Equation $\left|\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} + \frac{1}{\rho} \nabla p = \vec{g} + \nu \nabla \cdot \nabla \vec{u},\right|$ $\nabla \cdot \vec{u} = 0.$

fluids

$$
\nabla \cdot (\mu (\nabla \mathbf{v} + \nabla \mathbf{v}^T)) = \mu (\nabla \cdot \nabla \mathbf{v} + \nabla \cdot (\nabla \mathbf{v})^T)
$$

$$
\nabla \cdot \begin{bmatrix} \frac{\partial \mathbf{v}}{\partial x_1} \\ \frac{\partial \mathbf{v}}{\partial x_2} \\ \frac{\partial \mathbf{v}}{\partial x_3} \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x_1} \sum_i \frac{\partial v_i}{\partial x_i} \\ \frac{\partial}{\partial x_2} \sum_i \frac{\partial v_i}{\partial x_i} \\ \frac{\partial}{\partial x_3} \sum_i \frac{\partial v_i}{\partial x_i} \end{bmatrix} = \nabla (\nabla \cdot \mathbf{v}) = 0
$$
for incompressible

Newtonian fluids: $\sigma = -pI + \mu(\nabla \mathbf{v} + \nabla \mathbf{v}^T) + \lambda \mathbf{tr}(\mathbf{D})\mathbf{I}$

 $tr(D) = \nabla \cdot v = 0$ for incompressible fluids

With constraint view, this step is stable!

Time Splitting

Incompressible Navier-Stoke's Equation

Consider a generic ODE:

$$
\frac{dq}{dt} = f(q) + g(q).
$$

Explicit time integration with splitting:

$$
\tilde{q} = q^n + \Delta t f(q^n),
$$

$$
q^{n+1} = \tilde{q} + \Delta t g(\tilde{q}).
$$

$$
q^{n+1} = (q^n + \Delta t f(q^n)) + \Delta t g(q^n + \Delta t f(q^n))
$$

= $q^n + \Delta t f(q^n) + \Delta t (g(q^n) + O(\Delta t))$
= $q^n + \Delta t (f(q^n) + g(q^n)) + O(\Delta t^2)$
= $q^n + \frac{dq}{dt} \Delta t + O(\Delta t^2)$.
Explicit Euler

$\left|\frac{\partial \vec{u}}{\partial t}+\vec{u}\cdot\nabla\vec{u}+\frac{1}{\rho}\nabla p=\vec{g}+\nu\nabla\cdot\nabla\vec{u},\right|$ $\nabla \cdot \vec{u} = 0.$

The Smoothed Particle Hydrodynamics (SPH) Method A Brief Introduction

Given a field *A* **and a smoothing kernel function** *W***, e.g. Gaussian**

A smoother version of *A* **as an approximation of it is**

$$
A(\mathbf{x}) \approx (A * W)(\mathbf{x}) = \int A(\mathbf{x}')W(\mathbf{x} - \mathbf{x}', h)dv
$$

Favored properties of *W***:**

 $\int_{\mathbb{R}^d} W({\bf r}',h) d\nu'=1$ (normalization condition) $\lim_{h'\to 0}W(\mathbf{r},h')=\delta(\mathbf{r})$ (Dirac- δ condition) $W(\mathbf{r},h)\geq 0$ (positivity condition) $W(\mathbf{r},h)=W(-\mathbf{r},h)$ (symmetry condition) $W(\mathbf{r},h) = 0$ for $\|\mathbf{r}\| \geq \hbar$, (compact support condition)

A Brief Introduction to SPH

To solve the incompressible Navier-Stoke's Equation

$$
\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} + \frac{1}{\rho} \nabla p = \vec{g} + \nu \nabla \cdot \nabla \vec{u},
$$

$$
\nabla \cdot \vec{u} = 0.
$$

Just need to approximate the differential operators, And relate velocity to pressure via constitutive models

Difference and symmetric formula are often used:

$$
\nabla A_i \approx \langle \nabla A_i \rangle - A_i \langle \nabla 1 \rangle
$$

=
$$
\sum_j \frac{m_j}{\rho_j} (A_j - A_i) \nabla_i W_{ij}.
$$

$$
\nabla A_i \approx \rho_i \left(\frac{A_i}{\rho_i^2} \langle \nabla \rho \rangle + \langle \nabla \left(\frac{A_i}{\rho_i} \right) \rangle \right)
$$

= $\rho_i \sum_j m_j \left(\frac{A_i}{\rho_i^2} + \frac{A_j}{\rho_j^2} \right) \nabla_i W_{ij}.$

Direct discretization are not accurate and can lead to instability:

$$
\nabla \mathbf{A}_i \approx \sum_j \frac{m_j}{\rho_j} \mathbf{A}_j \otimes \nabla W_{ij}
$$

$$
\nabla \cdot \mathbf{A}_i \approx \sum_j \frac{m_j}{\rho_j} \mathbf{A}_j \cdot \nabla W_{ij}
$$

A Brief Introduction to SPH

To solve the incompressible Navier-Stoke's Equation

$$
\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} + \frac{1}{\rho} \nabla p = \vec{g} + \nu \nabla \cdot \nabla \vec{u},
$$

$$
\nabla \cdot \vec{u} = 0.
$$

Just need to approximate the differential operators, And relate velocity to pressure via constitutive models

Handling pressure term by solving $\nabla \cdot u = 0$:

Relate velocity to pressure via state equation:

$$
p = -\frac{\partial \Psi}{\partial J}
$$
 e.g. $p = -\kappa(J-1)$ for $\Psi = \frac{\kappa}{2}$

— Weakly-Compressible SPH, or WCSPH

 $(J-1)^2$

- **• Implicit Imcompressible SPH (IISPH)**
- **• Divergence-Free SPH (DFSPH)**

A Brief Introduction to SPH

To solve the incompressible Navier-Stoke's Equation

$$
\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} + \frac{1}{\rho} \nabla p = \vec{g} + \nu \nabla \cdot \nabla \vec{u},
$$

$$
\nabla \cdot \vec{u} = 0.
$$

Just need to approximate the differential operators, And relate velocity to pressure via constitutive models

— All particles are only allowed to move less than the particle diameter per time step for $\lambda = 1$

CFL condition:
$$
\Delta t \leq \lambda \frac{\tilde{h}}{\|\mathbf{v}^{\max}\|}
$$

Use ghost particles to represent solids/air:

Fluid

Solid

This also avoids density underestimation.

Demo!

interactivecomputergraphics.github.io/physics-simulation

More on SPH

SPH solids [Peer et al. 2018]

Micropolar SPH [Bender et al. 2017] (particle with self-rotation)

Multiphase Fluids [Ren et al. 2014]

$$
\rho \frac{D\mathbf{v}}{Dt} = \boxed{-\nabla p} + \mu_t \nabla \times \boldsymbol{\omega} + \mathbf{f}
$$

$$
\rho \Theta \frac{D\boldsymbol{\omega}}{Dt} = \boxed{\mu_t(\nabla \times \mathbf{v} - 2\boldsymbol{\omega})} + \mathbf{f}
$$

Optimization-based SPH [Xie et al. 2023]

diffusion disabled

diffusion enabled

 $t = 2.3 s$

 $t = 6.0 s$

Next Lecture: Hybrid Lagrangian/Eulerian Methods

Next Week

- Nov 14: Paper Presentation
	- Chen et al. SIERE: A Hybrid Semi-Implicit Exponential Integrator for Efficiently Simulating Stiff Deformable Objects. ToG 2020 (Presenter: **Kevin You**)
	- Wolper et al. CD-MPM: Continuum Damage Material Point Methods for Dynamic Fracture Animation. SIGGRAPH 2018 (Presenter: **Shilin Ma**)
- Nov 16: Paper Presentation
	- Sharp et al. Data-Free Learning of Reduced-Order Kinematics. SIGGRAPH 2023 (Presenter: **Zoë Marschner**)
	- Sperl et al. Homogenized Yarn-Level Cloth. SIGGRAPH 2020 (Presenter: **Sarah Di**)

Image Sources

- <http://multires.caltech.edu/pubs/ds.pdf>
- <https://www.youtube.com/watch?v=UDQaw4Ff3sg>
- https://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics
- <https://sph-tutorial.physics-simulation.org/>