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15-769: Physically-based Animation of Solids and Fluids (F23)
Lec 16: Hybrid Lagrangian/Eulerian Methods



Recap: Fluid Simulation Fundamentals
Fluid as a special kind of solid, Eulerian View
Fluid: a special kind of solid whose strain energy only penalizes volume change

Fluid changes topology rapidly: 
• Use particles to track/represent fluid regions,  
• Use shape functions in world-space (Eulerian View)
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Recap: Fluid Simulation Fundamentals
Push Forward and Pull Back, Material Derivatives

X = ϕ−1(x, t)

Q(X, t) = Q(ϕ−1(x, t), t) ≡ q(x, t)Push forward: Pull back: q(x, t) = q(ϕ(X, t), t) ≡ Q(X, t)

a(x, t) =
Dv(x, t)

Dt
(Material Derivative)



Recap: Fluid Simulation Fundamentals
Deriving Incompressible Navier-Stoke’s Equation for Newtonian Fluids

Newtonian fluids: σviscosity = 2μD + λtr(D)I
Strain rate tensor:  D =

1
2

(∇v + ∇vT)

Bulk modulus → ∞

Adding viscosity for Incompressible 
Newtonian fluids

Momentum Equation (Lagrangian View):

ρ(x, t)
Dv
Dt

(x, t) = ∇x ⋅ σ(x, t) + ρ(x, t)gEulerian View:

Navier Stoke’s Equation (Inviscid):

Incompressible Navier-Stoke’s 
Equation (Inviscid):

Incompressible Navier-Stoke’s Equation

Push forward on integral form

σ =
1
J

PFT =
∂Ψ
∂J

I = − pI

Lagrange 
multiplier 
term



W

Discretization using particles:

Recap: Smoothed Particle Hydrodynamics (SPH)
Basic Idea

The kernel needs to involve a large number 
of neighbors for accurate estimation!

Given a field  and a smoothing kernel function , e.g. GaussianA W

A smoother version of  as an approximation of it isA

Favored properties of :W



Recap: SPH Fluid Simulation
Just need to approximate the differential operators, 
and relate velocity to pressure via constitutive models  
to solve

Direct discretization are not accurate 
and can lead to instability:

Difference and symmetric 
formula are often used:

Solve  (advection)ua ←
∂u
∂t

+ u ⋅ ∇u = 0

Solve  (apply external force)ub ←
∂u
∂t

= g

Solve  (diffusion)uc ←
∂u
∂t

= ν∇ ⋅ ∇u

Solve  (pressure projection)un+1 ← ∇ ⋅ u = 0

For each time step :n Time Splitting



Today: Hybrid Lagrangian/Eulerian Methods
Basic Idea

Introduce a background Eulerian Grid,  
and measure quantities on the grid nodes

Transfer information between the particles and grid

Solve  (advection)ua ←
∂u
∂t

+ u ⋅ ∇u = 0

Solve  (apply external force)ub ←
∂u
∂t

= g

Solve  (diffusion)uc ←
∂u
∂t

= ν∇ ⋅ ∇u

Solve  (pressure projection)un+1 ← ∇ ⋅ u = 0

For each time step :n Time Splitting

Using particles

Using the grid
— take advantage of 
both representations



Particle Advection
Solve ua ←

∂u
∂t

+ u ⋅ ∇u = 0

— derived from 
du(ϕ(X, t), t)

dt
= 0

Recall that ,  so the advection equation becomes 
∂V(X, t)

∂t
= 0

Solving advection using particles,  
we just need to move the particles based on the current velocity!

— fluids are moving,  
resulting in Eulerian velocity changes.

Our particles are Lagrangian particles! 
— each particle marks a fixed region in material space 
(Forces are evaluated in an Eulerian view)

Forward Euler:  xp ← xp + hu(xp, t)

Can use explicit Runge-Kutta, e.g. RK3, for higher accuracy.



Particle-Grid Transfer
Grid to particle is easy, can just use e.g. bilinear interpolation:

 ,   stores the interpolation weightsxp = Pxi P ∈ ℝdnp×dni

Particle to grid: inverse interpolation?

xi = arg min
x

1
2

∥Px − xp∥2 Too expensive!

 ,  where  is for normalizationxi = N−1PTxp Nij = δij ∑
k

Pki

Instead:



Grid-based Viscosity (Diffusion)
Solve uc ←

∂u
∂t

= ν∇ ⋅ ∇u

(i, j) (i + 1,j)(i − 1,j)

(i, j + 1)

(i, j − 1)

— Independent per dimension:
∂uk

∂t
= ν(∇ ⋅ ∇u)k = ν(

∂2uk

∂x2
+

∂2uk

∂y2
)

≈ ν(
uk(i + 1,j) + uk(i − 1,j) − 2uk(i, j)

Δx2
+

uk(i, j + 1) + uk(i, j − 1) − 2uk(i, j)
Δx2

)

Use implicit Euler for stability!



Pressure Projection on Eulerian Grid
Solve   s.t.  un+1 ←

∂u
∂t

= −
1
ρ

∇p ∇ ⋅ u = 0

After time discretization:  
un+1 − un

h
= −

1
ρ

∇p

un+1 = un − h
1
ρ

∇p

We want ,∇ ⋅ un+1 = 0

or equivalently,  — a Poisson Equation∇ ⋅ ∇p =
ρ
h

∇ ⋅ un

To avoid non-trivial null space of central difference,  
we use MAC grid.



Boundary Conditions (BC)

No-stick BC (for inviscid fluids):

No-slip BC (for viscos fluids):

Free surface:

Solid wall: 

For inviscid fluids:
=

0
In Eulerian View:  σ ⋅ n = 0



The Particle-In-Cell Method

Solve  (advection)ua ←
∂u
∂t

+ u ⋅ ∇u = 0

Solve  (apply external force)ub ←
∂u
∂t

= g

Solve  (diffusion)uc ←
∂u
∂t

= ν∇ ⋅ ∇u

Solve  (pressure projection)un+1 ← ∇ ⋅ u = 0

For each time step :n Time Splitting

Using particles

Using the grid

Transfer velocity from grid to particles

Transfer velocity from particles to grid



Extending to Hybrid Lagrangian/Eulerian Solid Simulation
The Material-Point Method

Solve  (advection)ua ←
∂u
∂t

+ u ⋅ ∇u = 0

Solve un+1 ←
∂u
∂t

= ∇ ⋅ σ + g

For each time step :n Time Splitting

Using particles

Using the grid

Transfer information from grid to particles

Transfer information from particles to grid

• Needs to track deformation gradient per particle using updated Lagrangian:  Fn+1 ≈ Fn + h
∂F
∂t

The Particle-In-Cell Method



Sparse Grid for Better Efficiency

Z-order indexing with better data locality:

Only place grid cells at region of interests:



Improving Accuracy

• Particle-grid transfer:


• FLIP, APIC, PolyPIC, PowerPIC, …


• Advection:


• BiMocq, Covector Fluids, …


• Pressure Projection:


• Advection-Reflection Solver


• Cut-cell methods


• …



More Fluid Simulation Research

• Vortex methods (Daniel will present a relevant paper)


• Lattice Boltzmann methods (LBM)


• Based on statistical physics


• Well-suited for efficient simulation of turbulent flows


• Reduction: 


• modeling fluids as height fields


• Applying model reduction (Olga will present a relevant paper) 

• Solid-fluid coupling (Sarah will present a relevant paper)



This is the last lecture



Next Week

• Nov 28: Paper Presentation


• Yin et al. Fluid Cohomology. SIGGRAPH 2023 (Presenter: Daniel Zeng)


• Panuelos et al. PolyStokes: A Polynomial Model Reduction Method for 
Viscous Fluid Simulation. SIGGRAPH 2023 (Presenter: Olga Guțan) 

• Nov 30: Paper Presentation


• Fei et al. A Multi-Scale Model for Simulating Liquid-Hair Interactions. 
SIGGRAPH 2017 (Presenter: Sarah Di)


• Rioux-Lavoie and Sugimoto et al. A Monte Carlo Method for Fluid 
Simulation. SIGGRAPH Asia 2022 (Presenter: Daniel Zeng)



Image Sources

• https://sph-tutorial.physics-simulation.org/


• https://en.wikipedia.org/wiki/Bilinear_interpolation


• https://docs.taichi-lang.org/docs/sparse


• https://orionquest.github.io/papers/SSPGASS/paper.html


• https://dl.acm.org/doi/pdf/10.1145/3130800.3130878


• https://cseweb.ucsd.edu/~viscomp/projects/SIG22CovectorFluids/paper/
CovectorFluids.pdf
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https://docs.taichi-lang.org/docs/sparse
https://orionquest.github.io/papers/SSPGASS/paper.html
https://dl.acm.org/doi/pdf/10.1145/3130800.3130878
https://cseweb.ucsd.edu/~viscomp/projects/SIG22CovectorFluids/paper/CovectorFluids.pdf
https://cseweb.ucsd.edu/~viscomp/projects/SIG22CovectorFluids/paper/CovectorFluids.pdf

