Minchen Li, 08/31/2023

Lec 2: Time Integration 15-769: Physically-based Animation of Solids and Fluids (F23)

Recap on Shape Representations

• Signed Distance Field (SDF)

Focus of the lectures:

- Particle-In-Cell (PIC) Method and Fluid-Implicit-Particle (FLIP) Method
- **Collision Obstacles** \bullet
- Particles
 - Smoothed-Particle Hydrodynamics (SPH)
 - Discrete Element Method (DEM)
- Mesh
 - Finite Element Method (FEM) for solids
 - Boundary Element Method (BEM) \bullet
 - Eulerian Method (grid is a structured mesh) for fluids \bullet
- Hybrid
 - Material-Point Method (MPM)

for fluids

(Adaptive) Spatial Discretization

- Eulerian solid simulation with c
- A material point method for sn
- Reformulating Hyperelastic Ma
- Hybrid grains: Adaptive coupling
- Fast Corotated Elastic SPH So
- Surface-Only Dynamic Deform
- Multi-Layer Thick Shells (2023)
- High-Order Incremental Poten
- Adaptive Anisotropic Remeshir

Papers for all methods available on course website

Recap on Shape Representations

$$v^{n} = \begin{bmatrix} v_{0x}^{n} \\ v_{0y}^{n} \\ v_{0z}^{n} \\ v_{1x}^{n} \\ v_{1y}^{n} \\ v_{1z}^{n} \\ \vdots \end{bmatrix}$$

Velocity

Newton's 2nd Law

• The spatially discrete, temporally continuous form

M

Mass matrix (for now)

$$\frac{dx}{dt} = v,$$
$$\frac{dv}{dt} = f.$$

 m_2 m_2 m_2 \prime

Time Stepping (Time Integration)

Newton's 2nd Law (Temporally Discrete) **Forward Difference, Forward Euler**

Forward difference approximation on velocity and acceleration

$$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^{n} \approx \frac{x^{n+1}-x^{n}}{\Delta t} \qquad \left(\frac{\mathrm{d}v}{\mathrm{d}t}\right)^{n} \approx \frac{v^{n+1}-v^{n}}{\Delta t} \qquad \left(f(t^{n}+\Delta t)=f(t^{n})+\frac{\mathrm{d}f}{\mathrm{d}t}(t^{n})\Delta t+O(\Delta t^{2})\right)$$

Taylor's expansion

$$\begin{split} \frac{x^{n+1}-x^n}{\Delta t} &= v^n,\\ M\frac{v^{n+1}-v^n}{\Delta t} &= f^n. \end{split}$$

$$x^{n+1} = x^n + \Delta t v^n,$$
$$v^{n+1} = v^n + \Delta t M^{-1} f^n$$

Newton's 2nd Law (Temporally Discrete) Forward and Backward Difference, Symplectic Euler

• Forward difference on acceleration, backward difference on velocity

$$x^{n+1} = x^n + \Delta t v^{n+1}$$
$$v^{n+1} = v^n + \Delta t M^{-1} f^n$$

Newton's 2nd Law (Temporally Discrete) Backward Difference, Backward Euler (or Implicit Euler)

Backward difference approximation on velocity and acceleration

$$x^{n+1} = x^n$$
$$v^{n+1} = v^n$$

Needs to solve a system of equations:

$$M(x^{n+1} - (x^n + \Delta t v^n)) - \Delta t^2 f(x^{n+1}) = 0.$$

$$+ \Delta t v^{n+1},$$

+ $\Delta t M^{-1} f^{n+1}$
$$f^{n+1} = f(x^{n+1})$$

Stability of Forward, Symplectic, and Backward Euler **Example on a uniform circular motion**

 $v^{n+1} = v^n + \Delta t M^{-1}$

Problem Setup

$$x^{n+1} = x^n + \Delta t v^{n+1}$$
$$f^n \qquad v^{n+1} = v^n + \Delta t M^{-1} f^n$$

$$x^{n+1} = x^n + \Delta t v^{n+1},$$

$$v^{n+1} = v^n + \Delta t M^{-1} f^{n+1}$$

Stability of Forward, Symplectic, and Backward Euler Analysis

More Time Integration Methods

- Backward Difference Formula (BDF)
- Leapfrog
 - Uses staggered configurations (e.g.
- Runge-Kutta Methods
- Exponential

• Uses configuration from multiple steps (e.g. $x^n, v^n, x^{n-1}, v^{n-1} \rightarrow x^{n+1}, v^{n+1}$) • A Unified Newton Barrier Method for Multibody Dynamics [Chen et al. 2022]

$$x^n, v^{n+1/2} \to x^{n+1}, v^{n+3/2}$$
)

Potential Course Project Idea: Comparing efficiency, robustness, and accuracy among different time integration methods on elastodynamics simulation.

Exponential integrators for stiff elastodynamic problems [Michels et al. 2014]

Newton's Method for Backward Euler Derivation

Newton's Method for Backward Euler Pseudo-code

tegration

Result: x^{n+1}, v^{n+1} 1 $x^{i} \leftarrow x^{n}$: 2 while $||M(x^i - (x^n + \Delta tv^n)) - \Delta t^2 f(x^i)|| > \epsilon$ do $\begin{array}{c|c} & \text{for } x; \\ \mathbf{4} & x^i \leftarrow x; \end{array}$ 5 $x^{n+1} \leftarrow x^i$; 6 $v^{n+1} \leftarrow (x^{n+1} - x^n)/\Delta t;$

Algorithm 1: Newton's Method for Backward Euler Time In-

3 | solve $M(x - (x^n + \Delta t v^n)) - \Delta t^2 (f(x^i) + \nabla f(x^i)(x - x^i)) = 0$

Convergence Issue of Newton's Method Over-shooting

Optimization Time Integration

$$x^{n+1} = \arg\min_{x} E(x)$$

where $E(x) = \frac{1}{2} ||x - \tilde{x}^{n}||_{M}^{2} + \Delta t^{2} P(x).$
 $\tilde{x}^{n} = x^{n} + \Delta t v^{n}$
 $\frac{1}{2} ||x - \tilde{x}^{n}||_{M}^{2} = \frac{1}{2} (x - \tilde{x}^{n})^{T} M(x - \tilde{x}^{n})$
 $\frac{\partial P}{\partial x}(x) = -f(x)$

At the local minimum of E(x), $\frac{\partial E}{\partial x}(x^{n+1}) = 0$ $M(x^{n+1} - (x^n - x^n))$

$$+\Delta tv^n)) - \Delta t^2 f(x^{n+1}) = 0.$$

Optimization Time Integration Applying Newton's Method

Optimization Time Integration Applying Newton's Method, 2D Illustration

Global Convergence with Line Search Pseudo-code

Algorithm 3: Projected Newton Method for Backward Euler Time Integration

Result: x^{n+1} , v^{n+1}

1
$$x^i \leftarrow x^n;$$

2 do

5

6

7

- 3 $P \leftarrow \text{SPDProjection}(\nabla^2 E(x^i);$ 4 $p \leftarrow -P^{-1} \nabla E(x^i);$
 - $\begin{array}{c} \alpha \leftarrow \text{BackTrackingLineSear}\\ x^i \leftarrow x^i + \alpha p; \end{array}$

while
$$\|p\|_{\infty}/h > \epsilon;$$

 $x^{n+1} \leftarrow x^i$.

9
$$v^{n+1} \leftarrow (x^{n+1} - x^n) / \Delta t;$$

$$x^i));$$

$$\operatorname{rch}(x^{i}, p); // \underbrace{\operatorname{Algorithm 2: Backtracking Line Search}}_{\operatorname{Result: } \alpha}$$

$$1 \quad \alpha \leftarrow 1;$$

$$2 \quad \text{while } E(x^{i} + \alpha p) > E(x^{i}) \operatorname{do}$$

$$3 \quad \lfloor \alpha \leftarrow \alpha/2;$$

Descent Direction

Stability of Forward, Symplectic, and Backward Euler
Consider IVP

$$g'(t) = -15 g(t)$$
, $t \ge 0$, $g(0) = 1$
Solution: $g(t) = e^{-15t}$
 $y'(t) = -15 t$
 $y'(t) = -15 t$
 $y'(t) = -15 t$
 $y'(t) = -15 t$
 $g(t) = -20 as$
 $t \ge 00$
 $g^{nH} = (1 - ast) g^{n}$
 $g^{nH} = (1 - ast) g^{n}$
 $t \ge 0 \le at \le \frac{2}{a}$

Backward Euler $\frac{y^{n+1} - y^n}{2} = -\alpha_{ot} y^{n+1}$

 $y^{n+l} = \frac{y^n}{(1+\alpha st)}$

For the Forward / Backward Euler time
integration schemes,
thep can seen as applying the I on
$$\frac{d q}{dt} = g(q)$$

 $q = \begin{bmatrix} x \\ v \end{bmatrix}$, $g(q) = \begin{bmatrix} v \\ m'f(x) \end{bmatrix}$

Newton's Method for Backward Euler

$$M(x^{n+1} - (x^{n} + ot v^{n})) - ot^{2}f(x^{n+1}) = 0$$

Newton's method:
initial gness x^{0}
in iteration i
 $f(x^{n+1}) = o(f(x^{1}) + ot^{1}(x^{1})(x^{n+1} - x^{1}))$

Applying Newton's Methon on optimization min E(x)x Newton's method start x° , in iteration i: min $E(x^{i}) + S^{T} \forall E(x^{i}) + \frac{1}{2}S^{T} \forall^{2}E(x^{i}) S^{T}$

Descent Directions

For a smooth objective function E(x), at x^{i} where $\nabla E(x^{i}) \neq 0$, there exists a descent direction PDefinition: $(\exists \beta > 0 \quad s.t. \forall d \in (0, \beta))$ $E(x^{i} + dp) \leq E(x^{i})$ or $P^{\top} \nabla E(x^{i}) \leq 0$ $e.g. - \nabla E(x^{i})$

Newton's search direction: $P^{i} = -(\nabla^{2}E(x^{i}))^{T} \nabla E(x^{i})$ is descent if $\nabla^{2}E(x^{i})$ is SPD

 $P^{i} = - P^{-i} \nabla E(x^{i})$ where P is SPD and P is close ₹E(xi)