Instructor: Minchen Li

Deformation Map ¢

Lec 8: Strain Energy
15-769: Physically-based Animation of Solids and Fluids (F23)



Recap: Restitution

Approximating normal contact as a conservative force with potential energy P, (x),

Restitution < Energy Conservation of Time Stepping

Backward Euler
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Yunuo Chen*, Minchen Li*, Lei Lan, Hao Su, Yin Yang, Chenfanfu Jiang. A Unified Newton Barrier Method for Multibody Dynamics. ACM ToG (SIGGRAPH), 2022.




Recap: Restitution

Use Damping energy to control restitution:
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Yunuo Chen*, Minchen Li*, Lei Lan, Hao Su, Yin Yang, Chenfanfu Jiang. A Unified Newton Barrier Method for Multibody Dynamics. ACM ToG (SIGGRAPH), 2022.



Recap: Moving Boundary Conditions
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Inversion Issue

More rigorous
basticity formulation

could help! j

Houdalni




Continuum Assumption

* Treating materials (solid, liquid, or gas) as continuous pieces of matter

 Not modeling microscopic interactions between molecules and atoms

e Particles in MPM or SPH are not D G G G G S
molecules or atoms

o .
[ ——computational mesh

 They are markers of a continuous .
piece of the material

@ ©

+— —material point

* Define quantities (e.g. density - [ subdomain
p(X, 1), velocity V(X, 1), etc) as | | 34
continuous functions of position /node
X E \_ 2 © ® o o & @




Continuum Motion

 Kinematics: the study of motion occurred in continuum materials

* QOur focus: change of shape, or deformation
Deformation

Map ¢

Definition (Deformation/Flow Map). We consider the motion of
material to be determined by a mapping ¢(-,t) : Q0 — Q¢ for QY, Qf C R?
where d = 2 or 3 is the dimension of the simulated problem (or domain).
The mapping ¢ is sometimes called the flow map or the deformation map.

Material Space Q" World Space 2’
x = x(X,t) = ¢(X, 1)
x(X,0)=X



Continuum Motion — Example

Example If our object is moving with a constant speed v along
direction n, then we have

x = X + tvn.

If an object went through some rigid motion after time ¢ (compared to
time 0), we will have

x = RX + b,

where R is a rotation matrix, b is some translation. R and b will probably
be some function with respect to time ¢ and initial position X, depending
on the actual motion.
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t=t1
.X:X‘l‘tlvn
x=RX+5b



Velocity and Acceleration

Lagrangian View v.s. Eulerian View

8¢ Remark The velocity V and acceleration A defined above are
V(X t) 815 ( ) based on the “Lagrangian view”, where they are functions of the material
configuration X and time ¢. Physically, this means we are measuring
82¢ o0V them on a specific particle. This particle has its mass and occupies some
A(X7 t) ot A0} (X t) 8t (X t) volume since the beginning.

V(,t): Q% - R%and A(-,t) : Q° — R?

Lagrangian view: Eulerian view:
Quantity measured Quantity measured
at a point on the solid at a point in space



Deformation Gradient

Definition (Deformation Gradient). The Jacobian of the deforma-
tion map ¢ is called the deformation gradient. The physics of elasticity
is naturally described in terms of this Jacobian. It is standard notation
to use F to refer to the Jacobian of the deformation mapping

0 - 0x
ox %0 = 5x

Discretely it is often a small 2 X 2 or 3 X 3 matrix. One special case is for a

cloth/thin shell in 3D, F is 3 X 2 because the material space is really just

2D. It can be thought of as F(-,t) : QY — R%*4, In other words, for every

material point X, F(X,t) is the R?X? matrix describing the deformation

Jacobian of the material at time . We can also use the index notation
0o; ox;

Fj=—0t = % i i=1,...,d
1T ox;  ox; Y

F(X,t) = (X, 1).




Deformation Gradient — Example

Example If our object is moving with a constant speed v along vn
direction n, then we have >

x = X + tun. F=1 @

=~
|
< O

If an object went through some rigid motion after time ¢ (compared to
time 0), we will have

x = RX + b, F=R @

where R is a rotation matrix, b is some translation. R and b will probably
be some function with respect to time ¢ and initial position X, depending

t =0
on the actual motion. x=X

t=t1

.X:X‘l‘tlvn
t=t1
x=RX+Db



Deformation Gradient — Example

* the deformation gradient represents how deformed a material is locally

/,/o e
e/

Material Space Q" World Space Q'




Volume Change

« J = det(F) characterizes infinitesimal volume change
. the ratio between the infinitesimal volumes of material in Q’ and Q°

. Fis a rotation matrix iff F~' = Fland J = 1.
e J> 1 means volume increase, d < 1 means volume decrease
 J=0 means the volume becomes zero: degenerate to a line or a plane (3D)

e J < 0 means the material is inverted



Strain Energy

 Measure elastic potential locally for each point (based on F), and then
iIntegrate them over the whole domain

e F s also called strain

« The elastic potential P, is also called strain energy

integrated from strain energy density functions ¥(F) : R%%¢ — R
at each material point in the solid domain:

P, = /Q U (F)dX.



Strain Energy
Rigid Null Space

* Observation: for solids undergoing only translational and/or rotational
motions, P, remains (

» — Any strain energy density functions W (F') have a rigid null space:

U(F)=0 VF=R

a square matrix F is a rotation matrix if and only if

F' =F ' and J=det(F)=1.




Strain Energy

A Straightforward Formulation

* Quadratically penalize any deviation of F from being a rotation matrix:

(7 - 1)

H .
U(F) = L|FTR - 1)2

U and A are the stiffness parameters

a square matrix F is a rotation matrix if and only if

F' =F ' and J=det(F)=1.




Strain Energy

The neo-Hookean Model

Unp(F) = % (tr(F'F) — d) — pIn(J) - ’2\1112(,])

Taking the derivative of Uny(F) w.r.t. F, we obtain

ov . e .
5_F(F) =u(F—F ")+ AIn(J)F~ .
. p-term is minimized if F = F~', A-term is minimized if J = 1 | v

 Barrier term on J, so inversion-free! ’




Strain Energy

Lame Parameters

Definition (Lame Parameters). In standard strain energy density
functions, the stifiness parameters p and A\ are called Lame parameters.
They are related to the Young’s modulus F (a measure of resistance
to stretch) and Poisson ratio v (a measure of incompressibility) of the

solid:
B E \ Ev
M_Z(l—l-z/)’ - (14+v) 1 -2v)
Material Youngs Material Poisson's ratio
Modulus rubber ~0.5
/IGPa gold 0.42
Mild Steel 210 saturated clay 0.40-0.50
magnesium 0.35
HOppet 120 titanium 0.34
Bon-e 18 copper 033
Plastic 2 aluminium-alloy 0.33
Rubber 0.02 clay 0.30-0.45




Strain Energy

Rotation Invariance

Definition (Rotation Invariance). The energy density function of
any nonlinear elastic models is rotation invariant. Mathematically speak-
ing,

¥(F) = U(RF) VF e R*%and d x d rotation matrix R.

Intuitively, any rotations after deformation should not further change the
strain energy density function value.

v h=w )



Strain Energy

Linear Elasticity

Topology Optimization

Definition (Linear Elasticity). Linear elasticity has the energy den-
sity function

A
Uin(F) = plel2 + Str(e).

Here € = (F + F7) — I is the small strain tensor, and we see that -

Ui, (F') is a quadratic function of F.

Displacement modal magnitude

* No rigid null space, nor rotation invariant
» specially designed for infinitesimal strains

» calibrated to real-world experiments under
small deformations

Structural Analysis



Strain Energy

Isotropic and Anisotropic Elasticity

Definition (Isotropic Elasticity). The energy density function of
isotropic elastic models satisfies

U(F)=¥(FR) VF eR*%and d x d rotation matrix R.

Intuitively, the same amount of stretch in any direction will result in the
same energy change. There is no special directions that the material is
harder or easier to be deformed than others.

 neo-Hookean and our intuitive model are both isotropic.
 linear elasticity is not, as it is not designed for rotational motions
* For anisotropic elastic models, the stretch resistance differs in different directions

* e.g. cloth, bones, tissues, woods, etc



Polar Singular Value Decomposition

Unlike standard SVD that always keep 3J;; non-negative
by allowing det(U) = —1 and det(V) = —1, Polar SVD always keep
det(U) = 1 and det(V) = 1 while allowing 3J;; to be negative. It is called
“Polar SVD” mainly because the Polar decomposition F = R.S can be

reconstructed via R = UV? and § = VEV?! where R is the closest
rotation to F and S is symmetric.

Algorithm 6: Polar SVD from Standard SVD
Result: U, 2, V
1 (U, ¥ V) < StandardSVD(F);

2 if det(U) < 0 then d
3 | U(:,d) « -U(:,d); T (F) = U (D) = (5 5
| S S NH(F) = Unu(X) 2(2;

5 if det(V) < 0 then
V(:ad) — _V(:ad);
7 | 2Udd ¢ —24d;




Consistency to Linear Elasticity

 Experimental results (dots) and predictions for Linear elasticity (1), neo-
Hookean (2) and Mooney-Rivlin (3) models:

11

Definition (Consistency to Linear Elasticity). To verify the con-
sistency to linear elasticity of a strain energy density function ¥ (F), we
just need to check whether the following relations all hold:

0.0 [~

: ov 02\
| | 1 50, D=0, and 575 (I) = 2ubi; + X

Here 1 <1,7 <d, and 0;; =1 if ¢ = j, otherwise it is 0.




Simplified Models

Corotated Linear Elasticity

Definition 13.7 (Corotated Linear Elasticity). To make linear elastic- ——— _
ity rotation-aware while keeping its simplicity, we can introduce a base |NOt rotation invariant,
rotation R™ and construct an energy density function not suitable for Iarge

deformation (there can

be artificially stiffened
penalizing any deviation between F and this fixed R™. This is called |behaviors)

U c(F) = Ui (R™MTF), (13.15)

corotated linear elasticity.

Calculating R:
R" = argm&n [F"—RJ||z st. R'=R™! and det(R)=1. (13.16)

As mentioned earlier, the solution is given by the Polar decomposition on
F", and with Polar SVD F” = U"X"(V")! | we have R" = U"*(V")I,



Simplified Models

As-Rigid-As-Possible (ARAP)
Uarap(F) = MZ(Uz‘ - 1)°
or u||F — R’

 Simple and efficient to calculate

* Often used in animation, shape modeling, surface parameterization



Strain Energy

Invertibility

» Definition: Strain energy density functions allowing det(F) < 0
* No line search filtering needed
» Can deal with inverted configurations
 Usually smoother — easier to optimize

e e.g. Stable neo-Hookean

o [Smith et al. 2018]

Bunny with randomized vertices



Next Lecture: Stress and Its Derivatives

Von Mises Stress
<0. lMPa 5MPa
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(b) mesh (c) collision, t=0.00156s (d) separation, t=0.00282s
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Image Sources

e https://www.math.ucla.edu/~cffjiang/research/mpmcourse/mpmcourse.pdf

» https://en.wikipedia.org/wiki/Neo-Hookean solid

e https:.//www.researchgate.net/publication/
334433486 Analysis of the Slope Response to an Increase in Pore Water
Pressure Using the Material Point Method/figures?lo="

o http://physicsnet.co.uk/a-level-physics-as-a2/materials/young-modulus/

» https:.//padeepz.net/ce6602-syllabus-structural-analysis-2-regulation-2013-
anna-university/

o https:.//www.youtube.com/watch?v=WV-J7u9aoHk
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https://en.wikipedia.org/wiki/Neo-Hookean_solid
https://www.researchgate.net/publication/334433486_Analysis_of_the_Slope_Response_to_an_Increase_in_Pore_Water_Pressure_Using_the_Material_Point_Method/figures?lo=1
https://www.researchgate.net/publication/334433486_Analysis_of_the_Slope_Response_to_an_Increase_in_Pore_Water_Pressure_Using_the_Material_Point_Method/figures?lo=1
https://www.researchgate.net/publication/334433486_Analysis_of_the_Slope_Response_to_an_Increase_in_Pore_Water_Pressure_Using_the_Material_Point_Method/figures?lo=1
http://physicsnet.co.uk/a-level-physics-as-a2/materials/young-modulus/
https://padeepz.net/ce6602-syllabus-structural-analysis-2-regulation-2013-anna-university/
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https://www.youtube.com/watch?v=WV-J7u9aoHk

