Instructor: Minchen Li

Lec 9: Stress and Its Derivative 15-769: Physically-based Animation of Solids and Fluids (F23)

Recap: Strain Energy Continuum View and Deformation Gradient

• Treating materials (solid, liquid, or gas) as **continuous pieces of matter**

• Deformation Gradient:

$$
\mathbf{F}(\mathbf{X},t) = \frac{\partial \phi}{\partial \mathbf{X}}(\mathbf{X},t) = \frac{\partial \mathbf{x}}{\partial \mathbf{X}}(\mathbf{X},t)
$$

$$
F_{ij} = \frac{\partial \phi_i}{\partial X_j} = \frac{\partial x_i}{\partial X_j}, \quad i,j = 1,\dots,d
$$

- **Volume change:** $J = det(F)$
- Strain Energy: $P_e = \int_{\Omega_0} \Psi(\mathbf{F}) d\mathbf{X}$

Recap: Strain Energy Examples and Properties

Barrier term on J, so inversion-free!

- **Strain Energy:** $P_e = \int_{\Omega_o} \Psi(\mathbf{F}) d\mathbf{X}$
- **• Rigid Null Space:** $\Psi(\mathbf{F}) = 0 \quad \forall \mathbf{F} = \mathbf{R}$
- **• e.g. penalizing deviation from rotation: • e.g. neo-Hookean elasticity:**

• Rotation-Invariance • Isotropic Elasticity $\Psi(\mathbf{F}) = \Psi(\mathbf{RF})$ $\Psi(\mathbf{F}) = \Psi(\mathbf{FR})$

$$
\Psi(\mathbf{F}) = \frac{\mu}{4} \|\mathbf{F}^T \mathbf{F} - \mathbf{I}\|_{\text{F}}^2 + \frac{\lambda}{2} (J-1)^2
$$

µ and λ are the Lame parameters

 $\forall \mathbf{F} \in \mathbb{R}^{d \times d}$ and $d \times d$ rotation matrix **R**

a square matrix \bf{F} is a rotation matrix if and only if

 $\mathbf{F}^T = \mathbf{F}^{-1}$ and $J \equiv \det(\mathbf{F}) = 1$.

$$
\Psi_{\text{NH}}(\mathbf{F}) = \frac{\mu}{2} \left(\text{tr}(\mathbf{F}^T \mathbf{F}) - d \right) - \mu \ln(J) + \frac{\lambda}{2} \ln^2(J)
$$

Recap: Strain Energy Polar Singular Value Decomposition

Algorithm 6: Polar SVD from Standard SVD
\n**Result:** U,
$$
\Sigma
$$
, V
\n1 (U, Σ V) \leftarrow StandardSVD(F);
\n2 if det(U) < 0 then
\n3 | U(:,d) \leftarrow -U(:,d);
\n4 | $\Sigma_{dd} \leftarrow -\Sigma_{dd};$
\n5 if det(V) < 0 then
\n6 | V(:,d) \leftarrow -V(:,d);
\n7 | $\Sigma_{dd} \leftarrow -\Sigma_{dd};$

Recap: Strain Energy Simplified Models

• Linearly Corotated Elasticity $\Psi_{\text{LC}}(\mathbf{F}) = \Psi_{\text{lin}}((\mathbf{R}^n)^T\mathbf{F})$

- **• Above are all invertible models (allowing det(F) ≤ 0)**
	- **• No line search filtering needed**
	- **• Can deal with inverted configurations**
	- **• Usually smoother easier to optimize**
	- **• More e.g. Stable neo-Hookean [Smith et al. 2018]**

• As-Rigid-As-Possible (ARAP) $\Psi_{\text{ARAP}}(\mathbf{F}) = \mu \sum_{i} (\sigma_i - 1)^2$

Bunny with randomized vertices

• Linear Elasticity

 $\Psi_{\text{lin}}(\mathbf{F}) = \mu \|\boldsymbol{\epsilon}\|_{\text{F}}^2 + \frac{\lambda}{2} \text{tr}^2(\boldsymbol{\epsilon})$

 $\epsilon = \frac{1}{2}(\mathbf{F} + \mathbf{F}^{T}) - \mathbf{I}$ is the small strain tensor

• Consistency to Linear Elasticity

$$
\hat{\Psi}(\mathbf{I}) = 0
$$
, $\frac{\partial \hat{\Psi}}{\partial \sigma_i}(\mathbf{I}) = 0$, and $\frac{\partial^2 \hat{\Psi}}{\partial \sigma_i \partial \sigma_j}(\mathbf{I}) = 2\mu \delta_{ij} +$

Today: Stress and Its Derivatives Simulating Inversion-Free Elastodynamics

Stress Definition and Examples

- a tensor field (like F) measuring pressure (unit: force per area)
-

related to F through a constitutive relationship, e.g. neo-Hookean model

(Hyperelastic Materials). Hyperelastic materials are Definition those elastic solids whose first Piola-Kirchoff stress P can be derived from an strain energy density function $\Psi(\mathbf{F})$ via

$$
\mathbf{P} = \frac{\partial \Psi}{\partial \mathbf{F}} \qquad P_{ij} = \frac{\partial \Psi}{\partial F_{ij}}
$$

• Cauchy stress

$$
\sigma = \frac{1}{J} \mathbf{P} \mathbf{F}^T = \frac{1}{\det(\mathbf{F})} \frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{F}^T
$$

Stress **Calculating P in the Diagonal Space for Isotropic Materials**

 $\mathbf{P} = \mathbf{U} \hat{\mathbf{P}} \mathbf{V}^T$ where $\mathbf{F} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, $\Psi(1)$

For the Neo-Hookean model Example

$$
\hat{\Psi}_{\rm NH}(\mathbf{\Sigma}) = \frac{\mu}{2} (\sum_i^d \sigma_i^2 - d) - \mu \ln(J) + \frac{\lambda}{2} \ln^2(J).
$$

Thus, we can first perform SVD on $\mathbf{F} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}$ and derive

 $\hat{\mathbf{P}}_{ii} = \mu($

tive of Ψ w.r.t. \mathbf{F} .

$$
\mathbf{F}) = \hat{\Psi}(\mathbf{\Sigma}), \quad \text{and} \quad \hat{\mathbf{P}}_{ij} = \frac{\partial \hat{\Psi}}{\partial \sigma_i} \delta_{ij}
$$

$$
(\sigma_i-\frac{1}{\sigma_i})+\lambda\ln(J)\frac{1}{\sigma_i}
$$

to compute $\frac{\partial \Psi}{\partial \mathbf{F}} = \mathbf{P} = \mathbf{U} \hat{\mathbf{P}} \mathbf{V}^T$ without symbolically deriving the deriva-

Stress Calculating P in the Diagonal Space for Isotropic Materials — Proof

$$
\delta \Psi = \frac{\partial \Psi}{\partial \mathbf{F}}(\mathbf{F}) : \delta \mathbf{F} = \frac{\partial \Psi}{\partial \mathbf{F}}(\mathbf{RF}) :
$$

$$
(\mathbf{P}(\mathbf{F})): (\delta \mathbf{F}) = (\mathbf{P}(\mathbf{RF})):
$$

$$
(\mathbf{P}(\mathbf{F})): (\delta \mathbf{F}) = (\mathbf{P}(\mathbf{RF}))_{ij}
$$

$$
(\mathbf{P}(\mathbf{F})): (\delta \mathbf{F}) = (\mathbf{R}^T \mathbf{P}(\mathbf{RF})
$$

$$
\mathbf{P}(\mathbf{F}) = \mathbf{R}^T \mathbf{P}(\mathbf{RF})
$$

$$
\mathbf{RP}(\mathbf{F}) = \mathbf{P}(\mathbf{RF})
$$

$$
\mathbf{P}(\mathbf{F}) = \mathbf{P}(\mathbf{U}\Sigma\mathbf{V}^T
$$

- $\delta(\mathbf{RF})$ **Rigid null space**
- $\delta(\mathbf{RF})$ **Hyperelasticity**
- ${}_{i}R_{ik}\delta F_{k\,j}$ **Index notation**
- $F)):\delta \mathbf{F} \mid$ **Associativity**
	- ∀*δ***F**
	- **Multiply R on both sides**
- **Similarly, we can prove** $P(F)R = P(FR)$ for Isotropic Elasticity.
	- $\langle T \rangle = \mathbf{U} \mathbf{P}(\Sigma) \mathbf{V}^T = \mathbf{U} \hat{\mathbf{P}} \mathbf{V}^T.$

Stress Derivative Derivation for Diagonal Space Calculation

 $\mathbf{P}(\mathbf{F}) = \mathbf{P}(\mathbf{R}\mathbf{R}^T\mathbf{F}\mathbf{Q}\mathbf{Q}^T) = \mathbf{R}\mathbf{P}(\mathbf{R}^T\mathbf{F}\mathbf{Q})\mathbf{Q}^T.$

Call $\mathbf{K} = \mathbf{R}^T \mathbf{F} \mathbf{Q}$, we have

 $\mathbf{P}(\mathbf{F}) = \mathbf{R}\mathbf{P}(\mathbf{K})\mathbf{Q}^T$

$$
\delta \mathbf{P} = \mathbf{R} \left[\frac{\partial \mathbf{P}}{\partial \mathbf{F}} (\mathbf{K}) : \delta(\mathbf{K}) \right] \mathbf{Q}^T = \mathbf{R} \left[\frac{\partial \mathbf{P}}{\partial \mathbf{F}} (\mathbf{K}) : (\mathbf{R}^T \delta \mathbf{F} \mathbf{Q}) \right] \mathbf{Q}^T \qquad \text{Use } \delta \mathbf{F}
$$

\n
$$
\delta \mathbf{P} = \mathbf{U} \left[\frac{\partial \mathbf{P}}{\partial \mathbf{F}} (\Sigma) : (\mathbf{U}^T \delta \mathbf{F} \mathbf{V}) \right] \mathbf{V}^T \qquad \text{Set } \mathbf{R} = \mathbf{U} \mathbf{G}
$$

\n
$$
(\delta \mathbf{P})_{ij} = U_{ik} \left(\frac{\partial \mathbf{P}}{\partial \mathbf{F}} (\Sigma) \right)_{klmn} U_{rm} \delta F_{rs} V_{sn} V_{jl}, \text{ and } (\delta \mathbf{P})_{ij} = \left(\frac{\partial \mathbf{P}}{\partial \mathbf{F}} (\mathbf{F}) \right)_{ijrs} \delta F_{rs}
$$

\n
$$
\left(\frac{\partial \mathbf{P}}{\partial \mathbf{F}} (\mathbf{F}) \right)_{ijrs} = \left(\frac{\partial \mathbf{P}}{\partial \mathbf{F}} (\Sigma) \right)_{klmn} U_{ik} U_{rm} V_{sn} V_{jl} \qquad \forall \delta \mathbf{F}
$$

For arbitrary rotation matrices R and Q

and $Q = V$

Stress Derivative Diagonal Space Derivatives

• Other ways to compute: Analytic Eigensystems for Isotropic Distortion Energies [Smith et al. 2019]

- - **• Modes with negative Eigenvalues are directly projected out**

$$
(\delta \mathbf{P})_{ij} = U_{ik} \left(\frac{\partial \mathbf{P}}{\partial \mathbf{F}} (\Sigma) \right)_{klmn} U_{rm} \delta F_{rs} V_{sn} V_{jl}, \text{ and } (\delta \mathbf{P})_{ij} = \left(\frac{\partial \mathbf{P}}{\partial \mathbf{F}} (\mathbf{F}) \right)_{ijrs} \delta F_{rs}
$$

$$
\frac{\partial \mathbf{P}}{\partial \mathbf{F}} (\Sigma) = \begin{bmatrix} A & & & \\ & B_{12} & & \\ & & B_{23} & \\ & & & B_{31} \end{bmatrix} \qquad \mathbf{A} = \begin{pmatrix} \hat{\Psi}_{,\sigma_1 \sigma_1} & \hat{\Psi}_{,\sigma_1 \sigma_2} & \hat{\Psi}_{,\sigma_1 \sigma_3} \\ & \hat{\Psi}_{,\sigma_2 \sigma_1} & \hat{\Psi}_{,\sigma_2 \sigma_2} & \hat{\Psi}_{,\sigma_2 \sigma_3} \\ & & & \hat{\Psi}_{,\sigma_3 \sigma_2} & \hat{\Psi}_{,\sigma_3 \sigma_3} \end{bmatrix}
$$

$$
\mathbf{B}_{ij} = \frac{1}{\sigma_i^2 - \sigma_j^2} \begin{pmatrix} \sigma_i \hat{\Psi}_{,\sigma_i} - \sigma_j \hat{\Psi}_{,\sigma_j} & \sigma_j \hat{\Psi}_{,\sigma_i} - \sigma_i \hat{\Psi}_{,\sigma_j} \\ & & & \sigma_i \hat{\Psi}_{,\sigma_i} - \sigma_j \hat{\Psi}_{,\sigma_j} \end{pmatrix}
$$

$$
\text{(With flattening and permutation)}
$$

$$
\mathbf{B}_{ij} = \frac{1}{2} \frac{\hat{\Psi}_{,\sigma_i} - \hat{\Psi}_{,\sigma_j}}{\sigma_i - \sigma_j} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \frac{1}{2} \frac{\hat{\Psi}_{,\sigma_i} + \hat{\Psi}_{,\sigma_j}}{\sigma_i + \sigma_j} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}
$$

Stress Derivative Implementation

NeoHookeanEnergy.py

```
1 import utils
2 import numpy as np
3 import math
\overline{4}5 def polar_svd(F):
       [U, s, VT] = np.linalg.svd(F)6
      if np.linalg.det(U) < 0:
\overline{7}U[:, 1] = -U[:, 1]8
                                                  \mathbf{F} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^Ts[1] = -s[1]9if np.linalg.det(VT) < 0:
10
           VT[1, :] = -VT[1, :]11
           s[1] = -s[1]12
      return [U, s, VT]
13
15 def dPsi_div_dsigma (s, mu, lam):
      ln_sigma_prod = math.log(s[0] * s[1])16
      inv0 = 1.0 / s[0]17
      dPsi = 0 = mu * (s[0] - inv0) + lam * inv0 *
18
      ln_sigma_prod
      inv1 = 1.0 / s[1]19
      dPsi = 1 = mu * (s[1] - inv1) + lam * inv1 *
20
      ln_sigma_prod
      return [dPsi_dsigma_0, dPsi_dsigma_1]
21
```

$$
\hat{\textbf{P}}_{ii} = \mu(\sigma_i - \frac{1}{\sigma_i}) + \lambda \ln(J) \frac{1}{\sigma_i}
$$

$$
A = \begin{pmatrix} \hat{\Psi}_{,\sigma_{1}\sigma_{1}} & \hat{\Psi}_{,\sigma_{1}\sigma_{2}} & \hat{\Psi}_{,\sigma_{1}\sigma_{3}} \\ \hat{\Psi}_{,\sigma_{2}\sigma_{1}} & \hat{\Psi}_{,\sigma_{2}\sigma_{2}} & \hat{\Psi}_{,\sigma_{2}\sigma_{3}} \\ \hat{\Psi}_{,\sigma_{3}\sigma_{1}} & \hat{\Psi}_{,\sigma_{3}\sigma_{2}} & \hat{\Psi}_{,\sigma_{3}\sigma_{3}} \end{pmatrix}
$$

\n
$$
A = \begin{pmatrix} \hat{\Psi}_{,\sigma_{1}\sigma_{1}} & \hat{\Psi}_{,\sigma_{2}\sigma_{2}} & \hat{\Psi}_{,\sigma_{2}\sigma_{3}} \\ \hat{\Psi}_{,\sigma_{3}\sigma_{1}} & \hat{\Psi}_{,\sigma_{3}\sigma_{2}} & \hat{\Psi}_{,\sigma_{3}\sigma_{3}} \end{pmatrix}
$$

\n
$$
A = \begin{pmatrix} \hat{\Psi}_{,\sigma_{1}\sigma_{1}} & \hat{\Psi}_{,\sigma_{2}\sigma_{2}} & \hat{\Psi}_{,\sigma_{2}\sigma_{3}} \\ \hat{\Psi}_{,\sigma_{3}\sigma_{1}} & \hat{\Psi}_{,\sigma_{3}\sigma_{3}} & \hat{\Psi}_{,\sigma_{3}\sigma_{3}} \end{pmatrix}
$$

\n
$$
A = \begin{pmatrix} \hat{\Psi}_{,\sigma_{1}\sigma_{1}} & \hat{\Psi}_{,\sigma_{1}\sigma_{1}} & \hat{\Psi}_{,\sigma_{1}\sigma_{1}} \\ \hat{\Psi}_{,\sigma_{1}\sigma_{2}} & \hat{\Psi}_{,\sigma_{1}\sigma_{2}} & \hat{\Psi}_{,\sigma_{1}\sigma_{3}} \\ \hat{\Psi}_{,\sigma_{1}\sigma_{2}} & \hat{\Psi}_{,\sigma_{1}\sigma_{3}} & \hat{\Psi}_{,\sigma_{1}\sigma_{1}} \end{pmatrix}
$$

\n
$$
A = \begin{pmatrix} \hat{\Psi}_{,\sigma_{1}\sigma_{1}} & \hat{\Psi}_{,\sigma_{1}\sigma_{1}} & \hat{\Psi}_{,\sigma_{1}\sigma_{1}} \\ \hat{\Psi}_{,\sigma_{1}\sigma_{1}} & \hat{\Psi}_{,\sigma_{1}\sigma_{1}} & \hat{\Psi}_{,\sigma_{1}\sigma_{1}} \\ \hat{\Psi}_{,\sigma_{1}\sigma_{1}} & \hat{\Psi}_{,\sigma_{1}\sigma_{1}} & \hat{\Psi}_{,\sigma_{1}\sigma_{1}} \end{pmatrix}
$$

\n
$$
A = \begin{pmatrix} \hat{\Psi}_{,\sigma_{1}} & \hat{\Psi}_{,\sigma_{1}} & \hat{\Psi}_{,\sigma_{1}} \\ \hat{\Psi}_{,\sigma_{1}\sigma_{1
$$

NeoHookeanEnergy.py

```
45 def d2Psi_div_dF2(F, mu, lam):
       [U, sigma, VT] = polar_svd(F)46
47
       Psilaigma_sigma = utils.maxe_PD\frac{1}{2}d2Psi_div_dsigma2(sigma,
48
       mu, lam))49
       B_{\text{left}} = B_{\text{left} \text{-} \text{coeff}} (sigma, mu, lam)
50
       Psi_sigma = dPsi_div_dsigma (sigma, mu, lam)
51B_right = (Psi_sigma[0] + Psi_sigma[1]) / (2 * max(sigma
52
       [0] + signa [1], 1e-6)B =  utils. make_PD([[B_left + B_right, B_left - B_right], [
53
       B_{\text{left}} - B_{\text{right}}, B_left + B_right]])
54
                                                     \mathbf{F}_{11}, \mathbf{F}_{21}, \mathbf{F}_{12}, \mathbf{F}_{22}M = np.array([0, 0, 0, 0]] * 4)55
       M[0, 0] = Psi_signa_sigma[0, 0]56
                                                P11
       M[0, 3] = Psi_signa_sigma[0, 1]57
       M[1, 1] = B[0, 0]58
                                                P_{21}M[1, 2] = B[0, 1]59
       M[2, 1] = B[1, 0]60
                                                P12
       M[2, 2] = B[1, 1]61
       M[3, 0] = Psi_signa_sigma[1, 0]62
                                                P_{22}M[3, 3] = Psi_signa_sigma[1, 1]63
64
       dP_div_dF = np.array([[0, 0, 0, 0]] * 4)65
       for j in range(0, 2):
66
           for i in range(0, 2):
67
                ij = j * 2 + i68
               for s in range(0, 2):
69
                    for r in range(0, 2):
70
                        rs = s * 2 + r71dP_div_dF[ij, rs] = M[0, 0] * U[i, 0] * VT72
       [0, j] * U[r, 0] * VI[0, s] \setminus+ M[0, 3] * U[i, 0] * VT[0, j] * U[r,
73
       1] * VT[1, s] \
                             + M[2, 2] * U[i, 0] * VT[1, j] * U[r,
74
       0] * VT[1, s] \
                             + M[2, 1] * U[i, 0] * VT[1, j] * U[r,
75
       1] * VT[0, s] \
                             + M[1, 2] * U[i, 1] * VT[0, j] * U[r,
76
       0] * VT[1, s] \
                             + M[1, 1] * U[i, 1] * VT[0, j] * U[r,
77
       1] * VT[0, s] \
                             + M[3, 0] * U[i, 1] * VT[1, j] * U[r,
78
       0] * VT[0, s] \
                             + M[3, 3] * U[i, 1] * VT[1, j] * U[r,
79
       1] * VT[1, s]return dP_div_dF
80
```
Stress Derivative Implementation (Cont.)

 $\left(\frac{\partial \mathbf{P}}{\partial \mathbf{F}}(\mathbf{F})\right)_{i ir s} = \left(\frac{\partial \mathbf{P}}{\partial \mathbf{F}}(\Sigma)\right)_{klmn} U_{ik} U_{rm} V_{sn} V_{jl}$ *A* $=$ $\begin{bmatrix} 1 & B_{12} \end{bmatrix}$ in 2D B_{12}

With flattening permutation

$$
F11, F22, F21, F12\nP22\nP21\nP12
$$

Deformation Gradient on Triangle Meshes

 $\mathbf{x}_2 - \mathbf{x}_1 = \mathbf{F}(\mathbf{X}_2 - \mathbf{X}_1)$ and $\mathbf{x}_3 - \mathbf{x}_1 = \mathbf{F}(\mathbf{X}_3 - \mathbf{X}_1)$

 ${\bf F}=[{\bf x}_2-{\bf x}_1,{\bf x}_3-{\bf x}_1][{\bf X}_2-{\bf X}_1,{\bf X}_3-{\bf X}_1]^{-1}$

connect the nodes with triangle elements $e = []$ for i in range $(0, n$ _seg): for j in range $(0, n$ _seg): # triangulate each cell following a symmetric pattern: if $(i \t% 2)^{-(j \t% 2)}$: e.append($[i * (n_seg + 1) + j, (i + 1) * (n_seg + 1)]$ $n_seg + 1) + j$, i * $(n_seg + 1) + j + 1$]) e.append($[(i + 1) * (n_s e g + 1) + j, (i + 1) *$ $(n_seg + 1) + j + 1, i * (n_seg + 1) + j + 1)$ else: e.append($[i * (n_seg + 1) + j, (i + 1) * (n_seg + 1)]$ $n_seg + 1) + j$, $(i + 1) * (n_seg + 1) + j + 1)$ e.append($[i * (n_s e + 1) + j, (i + 1) * (n_s e + 1)]$ $n_seg + 1) + j + 1$, i * $(n_seg + 1) + j + 1$]

square_mesh.py

Elasticity Gradient and Hessian per Triangle

$$
\frac{\partial [\mathbf{F}_{11}, \mathbf{F}_{21}, \mathbf{F}_{12}, \mathbf{F}_{22}]^{T}}{\partial [\mathbf{x}_{1}^{T}, \mathbf{x}_{2}^{T}, \mathbf{x}_{3}^{T}]^{T}}
$$
\n
$$
= \begin{bmatrix}\n-\mathbf{B}_{11} - \mathbf{B}_{21} & -\mathbf{B}_{11} - \mathbf{E} \\
-\mathbf{B}_{12} - \mathbf{B}_{22} & -\mathbf{B}_{12} - \mathbf{E}\n\end{bmatrix}
$$

 $\mathbf{B} = [\mathbf{X}_2 - \mathbf{X}_1, \mathbf{X}_3 - \mathbf{X}_1]^{-1}$

 $\mathbf{x}_2 - \mathbf{x}_1 = \mathbf{F}(\mathbf{X}_2 - \mathbf{X}_1)$ and $\mathbf{x}_3 - \mathbf{x}_1 = \mathbf{F}(\mathbf{X}_3 - \mathbf{X}_1)$

 $\mathbf{F}=[\mathbf{x}_2-\mathbf{x}_1, \mathbf{x}_3-\mathbf{x}_1][\mathbf{X}_2-\mathbf{X}_1, \mathbf{X}_3-\mathbf{X}_1]^{-1}$

 $\begin{bmatrix} \bm{B}_{11} & \bm{B}_{21} & \bm{B}_{21} \ \bm{B}_{21} & \bm{B}_{12} & \bm{B}_{22} & \ \bm{B}_{22} & \bm{B}_{12} & \bm{B}_{22} \end{bmatrix} \in \mathbb{R}^{4 \times 6} \ \bm{B}_{22}$

 $\partial^2 \Psi$ $\sigma r \partial^2 \Psi \partial F$ ∂F **Elasticity Hessian: -** $\overline{dx^2}$ ∂F^2 ∂x ∂x

Elasticity Gradient and Hessian per Triangle Implementation

NeoHookeanEnergy.py

Elasticity Gradient and Hessian Summation Over All Triangles

NeoHookeanEnergy.py

```
val(x, e, vol, IB, mu, lam):
128 def
       sum = 0.0129
       for i in range(0, len(e)):
130
            F = deformation\_grad(x, e[i], IB[i])131
            sum += vol[i] * Psi(F, mu[i], lam[i])
132
       return sum
133
134
```

```
135 def grad(x, e, vol, IB, mu, lam):
       g = np.array([[0.0, 0.0]] * len(x))136
       for i in range(0, len(e)):
137
           F = deformation\_grad(x, e[i], IB[i])138
           P = vol[i] * dPsi_div_dF(F, mu[i], lam[i])139
           g local = dPsi_div_dx(P, IB[i])
140
           for j in range (0, 3):
141
               g[e[i][j]] += g\_local[j]142
       return g
143
144
145 def hess(x, e, vol, IB, mu, lam):
       IJV = [[0] * (len(e) * 36), [0] * (len(e) * 36), np.array146
       ([0.0] * (len(e) * 36))]for i in range(0, len(e)):
147
           F = deformation\_grad(x, e[i], IB[i])148
           dP_div_dF = vol[i] * d2Psi_div_dF2(F, mu[i], lam[i])149
           local_hess = d2Psi_div_dx2(dP_div_dF, IB[i])150
           for xI in range (0, 3):
151
               for xJ in range (0, 3):
152
                   for dI in range (0, 2):
153
                        for dJ in range (0, 2):
154
                            ind = i * 36 + (xI * 3 + xJ) * 4 + dI155
       * 2 + dJIJV[0][ind] = e[i][xI] * 2 + dI156
                            IJV[1][ind] = e[i][xJ] * 2 + dJ157
                            IJV[2][ind] = local_hess[xI * 2 + dI,158
       xJ * 2 + dJ]return IJV
159
```


Inversion-Free Line Search Filtering Derivation

$$
V(\mathbf{x}_i + \alpha^I \mathbf{p}_i) = 0
$$
 For all triar

$$
let([\mathbf{x}_{21}^{\alpha}, \mathbf{x}_{31}^{\alpha}]) \equiv \mathbf{x}_{21,1}^{\alpha} \mathbf{x}_{31,2}^{\alpha} - \mathbf{x}_{21,2}^{\alpha} \mathbf{x}_{31,1}^{\alpha} = 0
$$

with $\mathbf{x}_{ij}^{\alpha} = \mathbf{x}_{ij} + \alpha^{I} \mathbf{p}_{ij}$ and $\mathbf{x}_{ij} = \mathbf{x}_{i} - \mathbf{x}_{j}$, $\mathbf{p}_{ij} = \mathbf{p}_{i} - \mathbf{p}_{j}$

$$
\frac{det([\mathbf{p}_{21}, \mathbf{p}_{31}])}{det([\mathbf{x}_{21}, \mathbf{x}_{31}])} (\alpha^{I})^{2} + \frac{det([\mathbf{x}_{21}, \mathbf{p}_{31}]) + det([\mathbf{p}_{21}, \mathbf{x}_{31}])}{det([\mathbf{x}_{21}, \mathbf{x}_{31}])} \alpha^{I} + 1 = 0
$$

$$
\det([\mathbf{x}_{21}^{\alpha}, \mathbf{x}_{31}^{\alpha}]) \equiv \mathbf{x}_{21,1}^{\alpha} \mathbf{x}_{31,2}^{\alpha} - \mathbf{x}_{21,2}^{\alpha} \mathbf{x}_{31,1}^{\alpha} = 0
$$
\nwith $\mathbf{x}_{ij}^{\alpha} = \mathbf{x}_{ij} + \alpha^{I} \mathbf{p}_{ij}$ and $\mathbf{x}_{ij} = \mathbf{x}_{i} - \mathbf{x}_{j}$, $\mathbf{p}_{ij} = \mathbf{p}_{i} - \mathbf{p}_{j}$ \n
$$
\frac{\det([\mathbf{p}_{21}, \mathbf{p}_{31}])}{\det([\mathbf{x}_{21}, \mathbf{x}_{31}])} (\alpha^{I})^{2} + \frac{\det([\mathbf{x}_{21}, \mathbf{p}_{31}]) + \det([\mathbf{p}_{21}, \mathbf{x}_{31}])}{\det([\mathbf{x}_{21}, \mathbf{x}_{31}])} \alpha^{I} + 1 = 0
$$

For all triangle, find α^I , and then take their minimum.

Inversion-Free Line Search Filtering Implementation

 $\frac{\det([\bm{p}_{21},\bm{p}_{31}])}{\det([\mathbf{x}_{21},\mathbf{x}_{31}])}(\alpha^I)^2 + \frac{\det([\mathbf{x}_{21},\bm{p}_{31}]) + \det([\bm{p}_{21},\mathbf{x}_{31}])}{\det([\mathbf{x}_{21},\mathbf{x}_{31}])}\alpha^I + 1 = 0$

42

```
12 def smallest_positive_real_root_quad(a, b, c, tol = 1e-6):
      # return negative value if no positive real root is found
13
      t = 014
     if abs(a) \leq tol:
15
          if abs (b) \le tol: # f(x) = c > 0 for all x
16
              t = -117
          else:
18
              t = -c / b19
      else:
20
          desc = b * b - 4 * a * c21
       if desc > 0:
22
              t = (-b - math.sqrt(desc)) / (2 * a)23
              if t < 0:
24
                   t = (-b + math.sqrt(desc)) / (2 * a)25
          else: # desv<0 ==> imag, f(x) > 0 for all x > 026
              t = -127return t
28
```

```
alpha = min(BarrierEnergy.init\_step_size(x, n, o, p),
NeoHookeanEnergy.init_step_size(x, e, p)) # avoid
interpenetration, tunneling, and inversion
```
Demo

github.com/liminchen/solid-sim-tutorial /6_inv_free

Next Lecture: Governing Equations

$$
R(\mathbf{X},0)\frac{\partial \mathbf{V}}{\partial t}(\mathbf{X},t) = \nabla^{\mathbf{X}} \cdot \mathbf{P}(\mathbf{X},t)
$$

Weak form:

$$
\int_{\Omega^0} R^0(\mathbf{X}) Q_i^n(\mathbf{X}) A_i^n(\mathbf{X}) d\mathbf{X}
$$
\n
$$
= \int_{\partial \Omega^0} Q_i^n(\mathbf{X}) T_i^n(\mathbf{X}) ds(\mathbf{X}) - \int_{\Omega^0} Q_{i,j}^n(\mathbf{X}) P_{ij}^n(\mathbf{X}) d\mathbf{X}
$$

- $R(\mathbf{X},t)J(\mathbf{X},t) = R(\mathbf{X},0)$ Conservation of mass
	- $+ R(X, 0)$ **g** Conservation of momentum

the control of the state of the con-

 \mathcal{L}_{max} and \mathcal{L}_{max}

This Thursday: Project Proposal Presentation

- 10 \sim 15 minutes presentation $+$ 5 \sim 10 minutes Q&A
- Try to Cover:
	- Problem statement / goals, Related works, Approach, Resources, Evaluation, Timeline (See the Piazza [post](https://piazza.com/class/lky98czgjpw3d1/post/12) for details)
- Presentations:
	- 1. Sarah Di, Olga Guțan, Zoë Marschner
	- 2. Ruben Partono, Daniel Zeng, Shilin Ma
	- 3. Kevin You

Image Sources

- <https://www.youtube.com/watch?v=WV-J7u9aoHk>
- https://en.wikipedia.org/wiki/Stress%E2%80%93strain_curve