15-780: Graduate Artificial Intelligence
Homework 2

Due date: 2/10/2025 11:59pm

Instructions

e Please provide detailed and well-reasoned responses to the questions below.
e Answers should be clear, concise, and well-supported with examples or explanations.

e Submit your responses as a PDF document on the course’s gradescope page by the due
date.

Questions

1 Linear language models and approximation error

Consider a language modeling task where the objective is to predict the next word x; given
the previous context x1,-1 where z1,_1 = 21, 22,... 2,1 and every z; is a word from the
vocabulary V of size m.

Let f*(x; | x1.4_1) represent the “ground-truth” probability distribution. Our hypothesis
class is linear classifiers over some feature representation of the context. We study the
approximation error induced by different feature representations under different assumptions
on the ground truth.

Let 1(x1.;_1) represent features of a context and the hypothesis class is parameterized by
0 such that h(z1.;_1) = 079 (x1_1). The dimensionality of ¥, § depends on how the features
are constructed.

The one-hot encoding of a word v € V is a vector §(v) € 0,1™ where §(v) has 1 in the
position corresponding to v in the vocabulary and 0 elsewhere.

Part (a): Suppose the feature representation of x1,,_1 is the one-hot encoding of the last
WOI'd7 ie. w(l'lzi,l) = (5(331;1).
Suppose f* satisfies

f*(xi ‘ 331:1'71) = f*($z ‘ $i71), (1)

Suppose we apply the cross-entropy loss function. Write the expression for §* that mini-
mizes the expected loss. Is the approximation error zero?



Part (b): We now make a different assumption on f*:
fr@i | zria) = (@i | 22, 2im1). (2)

In other words, the probability of the next word depends on the two previous words.

Consider a natural different feature representations that is a concatenation of one-hot
vectors of the previous two words, i.e. ¥(x1,1) = [0(z;_1),0(z;_2)] € R*™*™. Can a linear
classifier always achieve an expected loss 0 (under the cross-entropy loss)? If yes, write out
the expression for #* that achieves this for any f* satisfying the condition above. If not,
prove that there is an f* that cannot be represented by a 8*. You may use either a counting
argument or given an explicit example of such f*.

Part (c): Repeat the exercise above for a new feature representation that is a flattened
outer product of the one-hot vectors of the previous two words:

Y(x14-1) = flatten(d(x;_1) ® 0(x;_2)), (3)

where ¢(z1,,_1) € R™,

2 Optimization methods

In this problem, you will explore the evolution of optimization algorithms, starting from
Gradient Descent (GD) and progressively introducing improvements like Momentum, Adap-
tive Learning Rates, and Adam. Each part includes the update rule, and your task is to
think critically about its purpose and effect while applying the algorithms to minimize the
following convex function:

f(z,y) = 502" + ¢,

where z,y € R. This function has “steep” curvature along the z-axis and “shallow”
curvature along the y-axis, making it a good test case for optimization challenges.

2.1 Gradient Descent (GD)

Gradient Descent updates parameters by moving in the direction of steepest descent:
Trp1 = 2 — NV f(zn),

where 1 > 0 is the learning rate.

(a) Derive the gradient V f(x,y) for the given function.

(b) Why might a single fixed learning rate n be problematic for minimizing f(z,y), given
its steep curvature along the x-axis?

(c) Using n = 0.1 and the initial point (zg,yo) = (1, 1), compute the first two iterations of
Gradient Descent. Does this illustrate any challenges you described in part (b)?



2.2 Momentum

Momentum reduces oscillations by accumulating velocity from past gradients. The update
rule is:

Vg1 = Bug + Vf(xk), Tr1 = Tk — NV,

where vy, is the accumulated velocity, 5 € [0,1) is the momentum parameter, and n > 0 is
the learning rate.

a) Intuitively explain why adding a momentum term helps reduce oscillations alon e
Intuitivel lain why adding t t hel d illati long th
steep z-axis.

(b) Compute the first two iterations of Momentum-Based Gradient Descent using § = 0.9,
n = 0.1, and (zo,90) = (1,1). Assume vy = (0,0). Compare the updates with those
from Gradient Descent.

(¢) Why might momentum alone still struggle to optimize f(x,y)?

2.3 Adaptive Learning Rates (AdaGrad)

AdaGrad adjusts the learning rate for each parameter based on the history of squared gra-

dients:
(k) _ (R (k)

n; y  Lik+1l = Tik N °9;
Jz] (g

is the i-th component of the gradient at step j, and € > 0 prevents division by

where g(j )

Zero.
(a) Why is adjusting learning rates for each parameter helpful for a function like f(z,y)?

(b) Compute the effective learning rates 7] ) and ny ) after the first iteration, using n = 0.1
and e = 1078,

(c) What happens to the learning rate over time?

2.4 RMSProp

RMSProp modifies AdaGrad by using an exponential moving average of squared gradients
instead of the full history. The update rule is:

k1 = Yk + (1 — 7)91%7 Tk+1 = Tk — Lgkv
VSkt1 T €
where si is the EMA of squared gradients, and v € [0, 1) is a decay factor.

(a) How does using an exponential moving average of squared gradients change the learning
rates compared to Adagrad? Describe a clear advantage of RMSProp over Adagrad.

(b) Compare the role of v in RMSProp with the role of § in momentum. What does each
parameter control?



2.5 Adam

Adam combines momentum with adaptive learning rates. The update rule is:

mis1 = Bimg + (1= B1)gr, Ve = Bovi + (1 — Ba)gp,

N Me+1 A Vk+1

n A
Miy1 = ﬁ’ V41 = ﬁ’ L1 = Tk — @—+mk+1‘
- M ) k+1 T €

(a) Adam incorporates momentum and adaptive learning rate. Based on the equation
above, identify which of my, vy correspond to momentum and which to adaptive learn-
ing rate?



