15-780: Lecture 2

Aditi Raghunathan

Jan 15 2023

North-star models

GPT-4, Claude, Llama

- "Large language models"
- Exceptional Multidisciplinary Performance
- Great as coding assistants, writing assistants etc

GPT4 performance

Simulated exams	GPT-4 estimated percentile
Uniform Bar Exam (MBE+MEE+MPT) ¹	298/400 ~90th
LSAT	163 ~88th
SAT Evidence-Based Reading & Writing	710/800 ~93rd
SAT Math	700/800 ~89th
Graduate Record Examination (GRE) Quantitative	163/170 ~80th
Graduate Record Examination (GRE) Verbal	169/170 ~99th
Graduate Record Examination (GRE) Writing	4/6 ~54th
USABO Semifinal Exam 2020	87/150 99th–100th
USNCO Local Section Exam 2022	36/60
Medical Knowledge Self- Assessment Program	75%
Codeforces Rating	392 below 5th

North-star models

OpenAI's CLIP model

- Bridges vision and language
 - Text-to-image generators
- General purpose capable vision models
- Image search and retrieval



Supervised learning

• At their core, LLMs and CLIP are **prediction models**

MNIST example

Input

Target

6

2

LLMs

Input

"The sun rises in the"

0

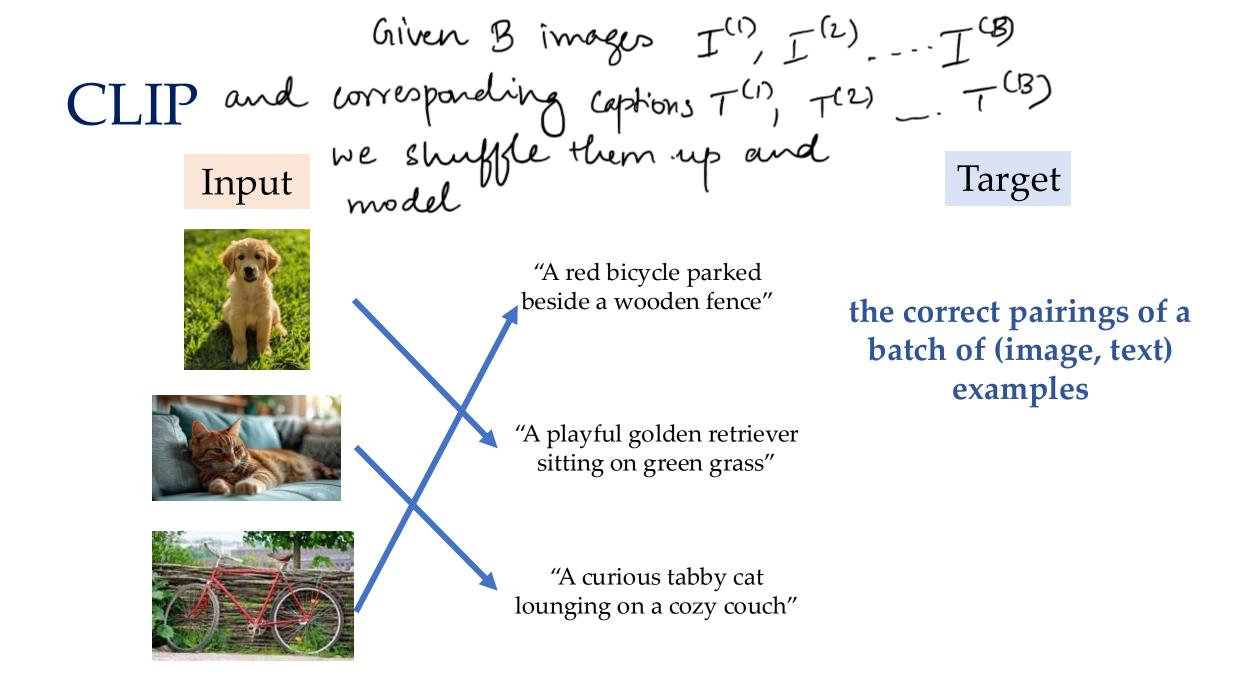
Target

"east"

"After missing the bus, she decided to walk to the"

"store (or "office" or "park")

$$x_1, x_2, \dots, x_{i-1}$$
 $p(x_i \mid x_1, x_2, \dots, x_{i-1})$

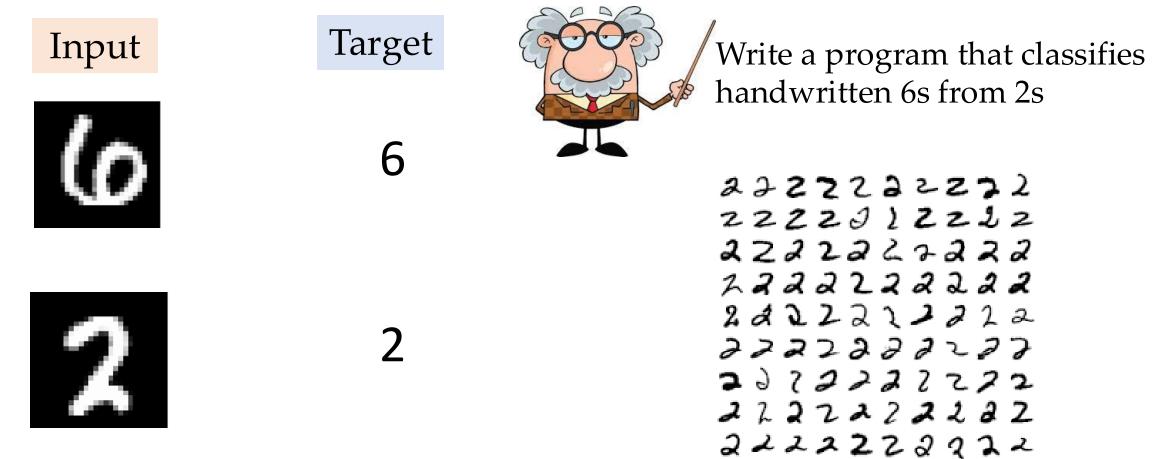


Supervised learning

• At their core, LLMs and CLIP are **prediction models**

How do we obtain f?

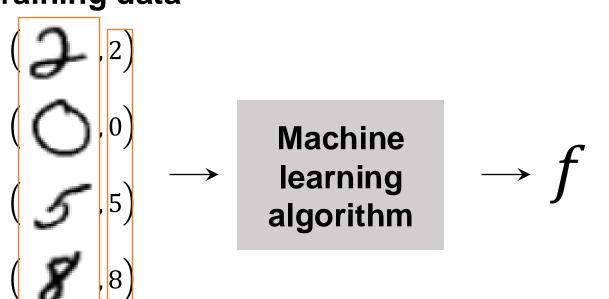
How to do prediction?



22222222222

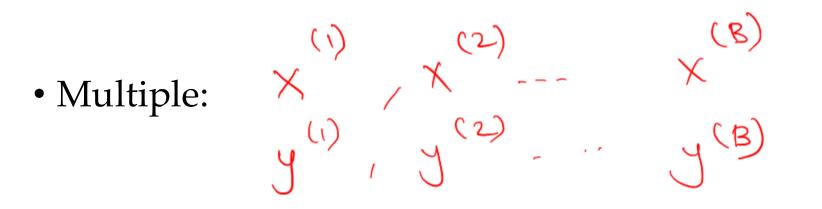
- Collect a large volume of images and their corresponding numbers
- Write ML algorithm "figure out" what *f* is

Training data



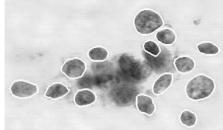
Notation • Inputs $\chi \in \mathbb{R}^n$ $[\chi_1, \chi_2 \dots \chi_n]$ χ_i : it index

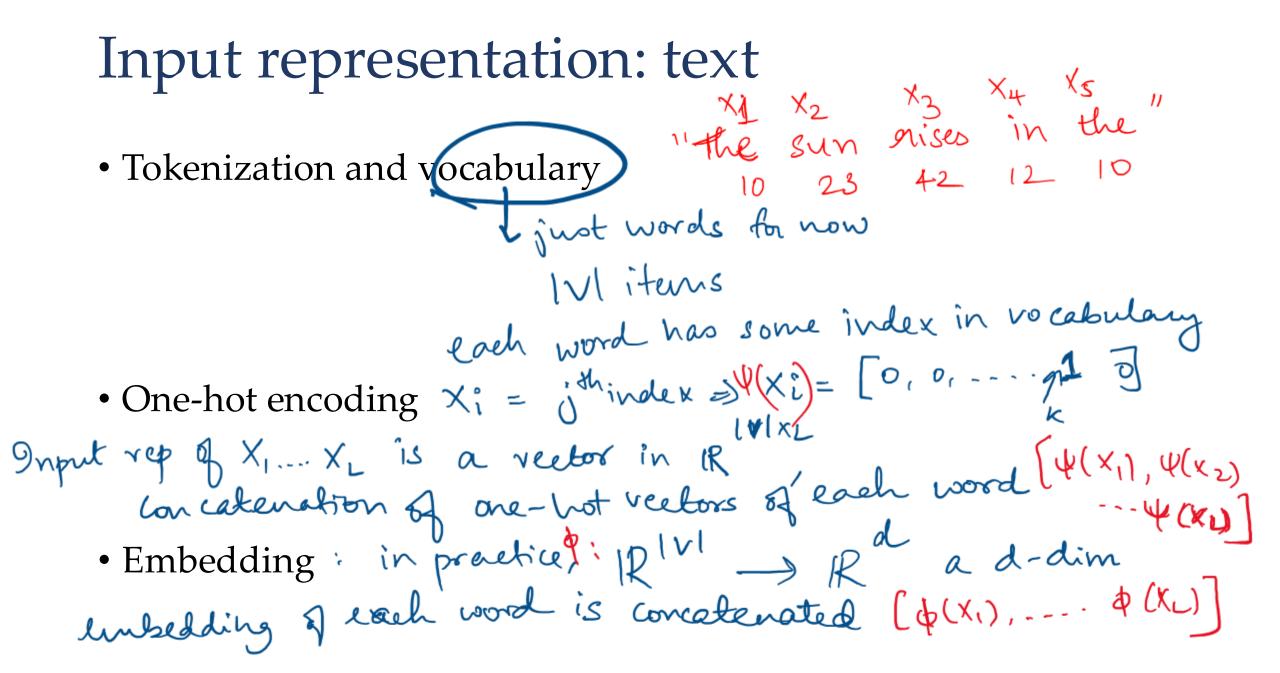
· Target y EZ1, k? & possible outcomes



Input representation

- Breast tumor classification example
 - Numerical description of the physical and structural characteristics of the cell [aug size, smallest sze,] EIRN
- Images 6 28×28 Flattened representation [X, X2...] ER Xi = ith pixel when Hattened
 - Tensor representation (Channels, Height, Width)





Hypothesis and hypothesis class
Hypothes function ho:
$$\mathbb{R}^{n} \longrightarrow \mathbb{R}^{k} \longrightarrow$$
 scores of k classes
 \longrightarrow use real-valued scales for ease of optimization
 \longrightarrow $(ho(X))_{i}^{2}$: score of class i
s prediction from $ho(X)$: Typically argmax

Hypothesis and hypothesis class Linear function $\theta \in \mathbb{R}$ $f_{1}wear four for the first of the first of the first of the first for the first hear combination of inputs each score is a different linear combination of inputs functions <math display="block">f_{1} = \begin{cases} h_{\theta} \mid \theta \in \Theta \\ h_{\theta} \mid \theta \in \Theta \end{cases} \text{ set } g \text{ hypothesis functions} \\ \text{parametrized by } \Theta \end{cases}$ hypothesis What makes a good hypothesis? class

$$l_{0-1}(h_0(x), y) = \int argmax(h_0(x) \neq y)$$

-> loss is zoro if argmax prediction fam holx) matches y -> difficult to optimize !! Loss functions $E_{X}: ho(X) \in [1, -2, 5, 4]$

• Convert to "probabilities"
• Positive : via exponentiation
$$\begin{bmatrix} xp(i), exp(-2.5), xp(4) \\ N = exp(i) + exp(-2.5) \\ + exp(4) \\ + exp(4) \\ \vdots = \begin{bmatrix} x \\ i = \end{bmatrix} \begin{bmatrix} xp(ho(x)) \\ i \end{bmatrix} \begin{bmatrix} xp(i), exp(-2.5), xp(4) \\ + exp(4) \\ \vdots \end{bmatrix}$$

• Softmax

= $\left[\begin{array}{c} exp(ho(x); \\ Exp(ho(x)); \\ Exp(ho(x)); \end{array} \right]$

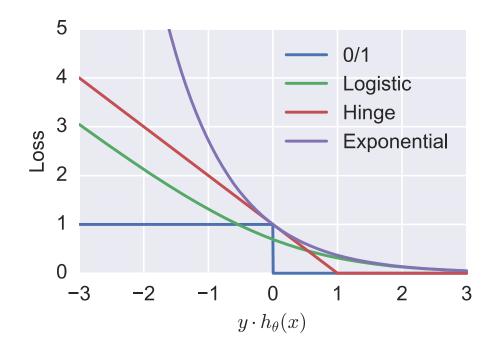
Loss functions
• Cross entropy loss
$$l_{cf}(ho(x), y) = -bg softmax(ho(x))y$$

 $mg bg probability g label y as predicted by converling
ho(x) to probabilities$

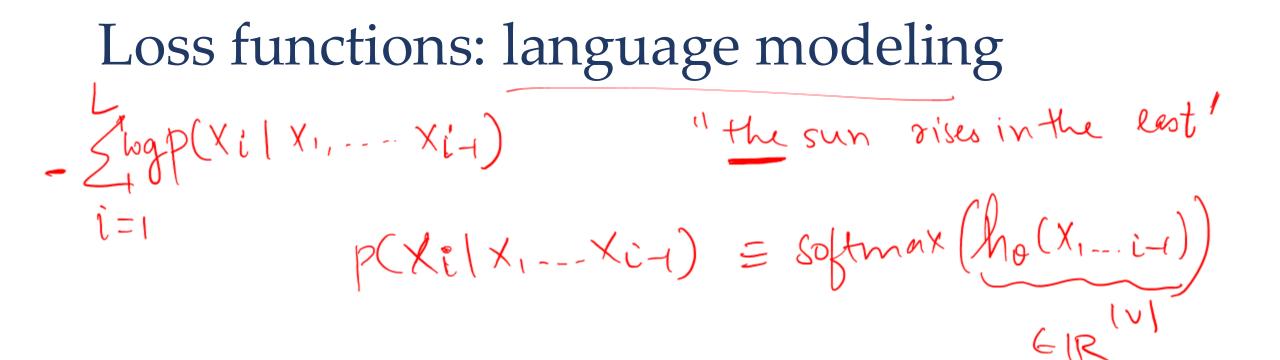
• Maximize likelihood of observed data

Loss functions: binary classification

Model only one logit $h_{\theta}(x)$ as the "score" of positive class and convert to a probability via sigmoid function



$$\begin{split} \ell_{0/1} &= 1\{y \cdot h_{\theta}(x) \leq 0\} \\ \ell_{\text{logistic}} &= \log(1 + \exp(-y \cdot h_{\theta}(x))) \\ \ell_{\text{hinge}} &= \max\{1 - y \cdot h_{\theta}(x), 0\} \\ \ell_{\exp} &= \exp(-y \cdot h_{\theta}(x)) \end{split}$$



Loss functions: CLIP
For every pair of image
$$I^{(i)}$$
, text $T^{(j)}$,
we compute "scores" $S^{(i)} = \Phi(I^{(i)})$. $\Phi(T^{(j)})$
Prediction took 1:
Which text corresponde to image $I^{(i)}$ $(I^{(i)}) || \cdot || \Phi(T^{(j)})||$
 $h_{\theta}(I^{(i)}) = [S^{(i)}, S^{(i)}, \dots, S^{(i)}]$
 $h_{\theta}(I^{(i)}) = [S^{(i)}, S^{(i)}, \dots, S^{(i)}] = -\log \frac{\exp(S^{(i)})}{\sum_{i=1}^{N} \exp(S^{(i)})}$
Analogous loss for predicting which $: -\log(\exp(S^{(i)})) / \sum_{j=1}^{N} \exp(S^{(j)})$

Piazza poll

Training procedure Trein loss 6 • Minimize train loss : X', y' $X^{(2)}, y^{(2)}$ Training data: Inputs and corresponding targets $\chi^{(B)}$, $\chi^{(B)}$

Coming up

- How to minimize training loss? (Optimization)
 - (Stochastic) gradient descent
 - Momentum-based methods
 - Adaptive gradient methods
- When/why does that work? (Generalization)
 - "Classical" view
 - Revisit after discussing deep networks

Any questions?

