15-780: Lecture 3

Aditi Raghunathan

Jan 22 2023

Recap

- We are building towards GPT4 and CLIP
- Supervised learning
	- Mapping input to targets \mathcal{P}
	- Notation: hypothesis function, hypothesis space, loss function

h(x)

"Goss ent

- Minimizing training loss
- **Why does this work? Generalization (This lecture)**
- How to minimize training loss? Optimization

Minimize training loss

 $H:$ set of hypothesis tundion h
h. $\chi \rightarrow \mathbb{R}$ $l(h(x), y) \in \mathbb{R}$ p^{*}: underlying distribution avec χ ^xy Train data: $x^{(i)}$, y⁽ⁱ⁾ i'd (pt) (n of these) Test data: $x_{1}y \sim p^{*}y$

Expected risk
 $L(h) = E\left[\ell(h(\alpha), y)\right] \geq 0$ we can about
 $L(h) = \max_{\substack{\lambda, y \sim p^*}} \ell(h(\alpha), y)$

Expected risk minimizer

Le arguin 2(h) \mathcal{H} "Sost possible hypothesis"

Empirical risk
U obsound (training somptes) $\sum_{n=1}^{n} k (k) = \frac{1}{n} \sum_{i=1}^{n} k (k (x^{(i)}, y^{(i)}))$

Formalizing intuitive picture

- Approximation error
- $L(h^*) = L(f^*)$
	- Estimation error

 $L(\hat{h})-L(\hat{h}^*)$

apprix error

 \overline{f} \rightarrow \overline{L} (f^*)

 $\binom{n}{r}$ - $L(h^*)$

 $= L(h) - L(f^*)$

Mexeus Disk"

Understanding estimation error
Estimation error: $L(h) - L(h)$ $L(h)$: a vandom grantity $P[L(h)-L(h^{\star})>\epsilon] < \delta$ estimation is high probability

Simple realizable case
 \bigcirc $h: \mathcal{X} \to \{0, 1\}$ "deterministic 1 h: x = ("1')
2 loss function: zuro-one error 1[h(x) = y] 3 It is finite $V = V + V$
"realizable": $f^* = h^*$ $f h^* s f h^* d u g$ $L(\stackrel{\ast}{h})=0$ $\Rightarrow \triangle(n) = 0 \Rightarrow \triangle(n) = 0$

we want to bound $P(L(\hat{h}) - L(h^{*}) 7\epsilon)$
 $L(\hat{h}) - (L(\hat{h})) \hat{h}$ is defined as variously $+ \hat{L}(\hat{h}) - L(h^{*})$ $B: \{ h | L(h) > \epsilon \}$ set of bad hypotheses $P[L(\hat{h}) - L(\hat{h}^*) > \epsilon] = P[L(\hat{h}) > \epsilon]$
 $O(\epsilon_{\text{nealized}}; \hat{h}^*y) = P(\hat{h} \in \beta)$

 $P[h^cB]$ $\left[\begin{matrix} 1 & 1 \\ 1 & 1 \end{matrix}\right] = 0$ Step one: If hypothesis which is bad $(L(h)$) to
what is probabily it has zero train loss
 $P(L^{(h)}=0)$ = $(L-E)$ $\leq e$ = \leq \leq 9s $P[\hat{h} \in \hat{B}] \leq (1-\hat{C})^{1/2}$

 \int rappears good" $(1-\hat{\epsilon})^n$ h aun classifier that has soo train bes bound: P[thEB; [(h)=0] $\leq \sum_{h\in B} \mathcal{F}[\hat{L}(h)\infty] \leq \frac{(\mathcal{B})\mathcal{C}}{\mathcal{L}}$ (B) $C_{-6\eta}$

P (h E B) S (H I et les lappeaux good on n Cotimation biton > E $\leq \log(H) + log(\frac{7}{8})$ $wp. 1-8 1(N)$ lxcess as n'increases, est error mix = cotination diereases $Covol$ as (71) incases, est

General recipe

- **CONVERGENCE SERVICE AND FOR SERVICE AND AND FOR SERVICE AND FOR SOLUTION**
• **Convergence:** for fixed h, $L(h)$ is close to $\hat{L}(h)$ and $\hat{L}(h)$ and $\hat{L}(h)$
- **Uniform convergence:** convergence holds for all hypothesis simultaneously
- *Why uniform convergence?*

makes it
harder as
. It expands

Takeaways

- Approximation error: decreases with increase in H
- Estimation error: more nuanced, depends on H
	- Very large H leads to high estimation error

• How to keep H small?

Regularization

• Linear classifiers: dimensionality, norm
 $h(n) = \Phi^T x \Phi \in \mathbb{R}^d$ $\|\Phi\|$ small

• Regularized objectiveTrain loss + λ $|| \phi ||_2$ objectue:

Any questions?

