
CSD 15-784 - Cooperative AI

Homework 1 – Normal-form games

(due Feb. 21 5:00pm US Eastern time)

Instructions

Submit your work on Gradescope. If you have not been added to the Gradescope
course (with ID 976999), contact us. Show all the work you have done in the
submission.

You may work alone or discuss with one other person, but you must follow
the following rules or it will be considered cheating. If you discuss with another
person, you must explicitly acknowledge that specific person on your writeup.
Also, the only way in which you may work with another person is to work
on a whiteboard together, and then when you are done discussing, to erase
the whiteboard, without taking any notes or other record with you, other than
what you remember. (Using the zoom whiteboard is allowed if you want to meet
remotely.) You should write up your code and your writeup alone.

External tools, including but not limited to the use of generative AI, should
generally be treated similarly to a person outside the course. If you happen
to find it effective, you may use them, for example, to get more familiar with
Python libraries or topics in the course in general. But in the end, you need
to do your assignments on your own, without any help from these tools. You
may not pass specific information from the assignments to these tools. (This
is of course also good practice for exam questions, as you will not have access
to such tools on exams at all.) To the extent you use these tools, you are also
responsible for ensuring that information from these external tools makes sense;
”I got this question on the exam wrong because ChatGPT told me something
false while studying” is not a valid excuse. If you use external tools, you must
explicitly acknowledge the extent to which you have used them.

1 Finding Nash equilibria of normal-form games.
(25 points.)

Find all the Nash equilibria of each of the following five two-player normal-form
games. Argue why the games have no other Nash equilibria. (Hint: for some

1



of these games, you may wish to use strict dominance or iterated strict domi-
nance, because any strategy eliminated by (iterated) strict dominance cannot
get positive probability in any Nash equilibrium. Also keep in mind that you
may want to use strict dominance by a mixed strategy.)

4, 4 8, 2
2, 8 7, 7

0, 8 4, 0
2, 0 0, 1

7, 7 6, 8
9, 2 0, 1

3, 5 5, 4
1, 7 7, 6

4, 0 4, 0 1, 2
3, 5 3, 4 2, 4
4, 0 1, 1 5, 0

2 Equilibrium Computation in Code (40 points.)

In this problem, you will code up an algorithm for computing, given a 2-player
game in normal form of arbitrary size, all of the following: (1) the best Nash
equilibrium, (2) the worst Nash equilibrium, (3) the best correlated equilibrium,
(4) the worst correlated equilibrium. We will take “best” to mean maximizing
social welfare (sum of expected utilities), and “worst” means minimizing that. In
general, there may be more than one optimal equilibrium and it does not matter
which one you return; but you should also return the value (social welfare) of
that equilibrium, for which there is a unique answer.

You will likely want to use the (mixed integer) linear programming formu-
lations from class.

Please write your algorithms in Python and submit a .py file containing
your code. We plan to test the code using Python 3.10 in particular. You are
allowed to use cvxpy with the GLPK MI solver to solve LPs and MIPs. (You
can install this by running pip install cvxopt.) You are not allowed to use
a library like nashpy that directly finds Nash equilibria.

Your code should define four functions named

1. best Nash

2. worst Nash

3. best correlated equilibrium

4. worst correlated equilibrium

2

https://www.cvxpy.org/index.html


that perform the four tasks specified above, respectively. (Obviously, you may
write further functions and define these four functions in terms of these further
functions.) Each of these functions should take as input a numpy array of shape
(n,m, 2) representing an n-by-m game specifying the payoff matrix of the game.
For example, the a Prisoner’s Dilemma would be defined as follows:

import numpy as np

pd = np.array([[[6,6] , [0,10]],

[[10,0] , [4,4]]])

Your best Nash and worst Nash methods should output a single 3-tuple, con-
sisting of

• the social welfare of the equilibrium;

• a numpy array with n entries representing the potentially mixed strategy
of Player 1;

• a numpy array with m entries representing the potentially mixed strategy
of Player 2.

For example, in the Prisoner’s Dilemma, the output should be (8, array([0,

1]), array([0, 1])) for both of these methods.
Your best correlated equilibrium and worst correlated equilibrium

functions should output a single 2-tuple consisting of

• the social welfare of the equilibrium;

• an n-by-m numpy array representing the correlated strategy of the two
players.

For example, in the Prisoner’s Dilemma, the output should be (8, array([[0,

0], [0, 1]])) for both of these methods.
Please include your own test cases in the Python file you submit.

3 A Problem About Computational Complexity
(35 points.)

Consider the following computational problem:
NEW-NASH. You are given a 2-player normal-form game G with at least 2

columns. Consider the game G′ that results from removing its rightmost column.
You are asked to determine whether there exists a Nash equilibrium of G′ that
is not an equilibrium of G.

a. Adapt the mixed integer linear program from class (for finding an optimal
Nash equilibrium) to solve this problem. (Refer to the rightmost column as c∗.)
Writing it in mathematical notation is fine; emphasize the “new” parts of the
program.

3



b. Prove the problem is NP-complete. Hints: To show membership, it
suffices to show that, given the supports of the new equilibrium, you could find
that new equilibrium and check that it is in fact new. To show hardness, you
may assume the following problem is NP-hard:

IN-SUPPORT. You are given a 2-player normal-form game G and a num-
ber p > 0. You are guaranteed that either there is no Nash equilibrium of G that
puts positive probability on the first row, or that there is a Nash equilibrium of
G that puts at least p probability on the first row. You are asked to determine
which of these two possibilities is the case for G.

As always, be careful about the direction in which you do the reduction.
That is, you have to show how an algorithm for NEW-NASH would allow you
to also solve IN-SUPPORT.

4


	Finding Nash equilibria of normal-form games. (25 points.)
	Equilibrium Computation in Code (40 points.)
	A Problem About Computational Complexity (35 points.)

