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Repeated games

In a (typical) repeated game,

— players play a normal-form game (aka. the stage game),
— then they see what happened (and get the utilities),

— then they play again,

— etc.

Can be repeated finitely or infinitely many times

Really, an extensive form game
— Would like to find subgame-perfect equilibria

One subgame-perfect equilibrium: keep repeating
some Nash equilibrium of the stage game

But are there other equilibria®?



Finitely repeated Prisoner’s Dilemma

* Two players play the Prisoner’s Dilemma k times

cooperate defect

N N
cooperate | 2, 2 0,3 /C(>< E\bb

defect 3, O 1, 1

* |n the last round, it is dominant to defect

* Hence, in the second-to-last round, there is no way to
iInfluence what will happen

* S0, it is optimal to defect in this round as well
« Etc.
 So the only equilibrium is to always defect



Modified Prisoner’s Dilemma

e Suppose the following game is played twice

cooperate defect, defect,

cooperate 5, 5 O, 6 O, 6
defect, 6, O 4, 4 1, 1
defect, 6, O 1, 1 2, 2

« Consider the following strategy:
— In the first round, cooperate;

— |In the second round, if someone defected in the first round,
play defect,; otherwise, play defect,

* |If both players play this, is that a subgame perfect
equilibrium??



Another modified Prisoner’s Dilemma

e Suppose the following game is played twice

cooperate defect crazy

cooperate 5, 5 O, 6 1, O
defect 6, O 4, 4 1, O
crazy O, 1 O, 1 O, 0

 What are the subgame perfect equilibria”

« Consider the following strategy:
— In the first round, cooperate;

— In the second round, if someone played defect or crazy in
the first round, play crazy; otherwise, play defect

* |s this a Nash equilibrium (not subgame perfect)?



Infinitely repeated games

* First problem: are we just going to add up the utilities
over infinitely many rounds?

— Everyone gets infinity!

 (Limit of) average payoff: lim__, .2, U(t)/n
— Limit may not exist...

* Discounted payoff: Z,8'u(t) for some 6 < 1



Infinitely repeated Prisoner’s Dilemma

cooperate defect

cooperate 2 ] 2 O, 3

defect 3, O 1, 1
 Tit-for-tat strategy:

— Cooperate the first round,

— In every later round, do the same thing as the other player did in the
previous round

 Is both players playing this a Nash/subgame-perfect
equilibrium? Does it depend on &7

* Trigger strategy:
— Cooperate as long as everyone cooperates
— Once a player defects, defect forever

 Is both players playing this a subgame-perfect equilibrium?

« What about one player playing tit-for-tat and the other playing
trigger?




Folk theorem(s)

Can we somehow characterize the equilibria of infinitely
repeated games?

— Subgame perfect or not?

— Averaged utilities or discounted?

Easiest case: averaged utilities, no subgame perfection

We will characterize what (averaged) utilities (u4, u,, ...,
u,) the agents can get in equilibrium

The utilities must be feasible: there must be outcomes of
the game such that the agents, on average, get these
utilities

They must also be enforceable: deviation should lead to
punishment that outweighs the benefits of deviation

Folk theorem: a utility vector can be realized by some
Nash equilibrium if and only if it is both feasible and
enforceable



Feasibility

2,2 | 0,3
3,0 | 1,1

The utility vector (2, 2) is feasible because it is one of
the outcomes of the game

The utility vector (1, 2.5) is also feasible, because the
agents could alternate between (2, 2) and (0, 3)

What about (.5, 2.75)?

What about (3, 0.1)7?

In general, convex combinations of the outcomes of
the game are feasible

— psa; + poa,+ ... + p,a,is a convex combination of the g if
the p,sum to 1 and are nonnegative




Enforceability

2,2 | 0,3
3,0 | 1,1

A utility for an agent is not enforceable if the agent
can guarantee herself a higher utility

E.g. a utility of .5 for player 1 is not enforceable,
because she can guarantee herself a utility of 1 by
defecting

A utility of 1.2 for player 1 is enforceable, because
player 2 can guarantee player 1 a utility of at most 1
by defecting

What is the relationship to minimax strategies &
values?




Computing a Nash equilibrium in a 2-
player repeated game using folk theorem

* Average payoff, no subgame perfection

« Can be done in polynomial time:

— Compute minimum enforceable utility for each agent
* |.e., compute maxmin values & strategies

— Find a feasible point where both players receive at least
this utility
« E.g., both players playing their maxmin strategies
— Players play feasible point (by rotating through the
outcomes), unless the other deviates, in which case they
punish the other player by playing minmax strategy forever
 Minmax strategy easy to compute

* A more complicated (and earlier) algorithm by Littman

& Stone [04] computes a “nicer” and subgame-perfect
equilibrium



Example Markov Decision Process (MDP)

* Machine can be in one of three states: good,
deteriorating, broken

« Can take two actions: maintain, ignore

5 5

good shape gnore 2) i tain (1) deteriorating

1] /maintain (1) .5 |/ ignore (2)

maintain (-1)




Stochastic games

A stochastic game has multiple states that it can be in

Each state corresponds to a normal-form game

After a round, the game randomly transitions to another state
Transition probabilities depend on state and actions taken
Typically utilities are discounted over time

1,1(1,0
0,1/0,0

1,010, 1
0,1/1,0

« 1-state stochastic game = (infinitely) repeated game
« 1-agent stochastic game = Markov Decision Process (MDP)




Stationary strategies

« A stationary strategy specifies a mixed strategy for
each state

— Strategy does not depend on history

— E.g., In a repeated game, stationary strategy = always
playing the same mixed strategy

* An equilibrium in stationary strategies always exists
[Fink 64]

« Each player will have a value for being in each state



Shapley’s [1953] algorithm for 2-player
Zero-sum stochastic games (~value iteration)

Each state s is arbitrarily given a value V(s)

— Player 1’s utility for being in state s

Now, for each state, compute a normal-form game that takes
these (discounted) values into account

-3+ 5(.7*2 + .3*5)

* * —
v V(s2) = 2 =-3+2.90
* -3, 3 * * * |-3+2.99,
* * 3-2.90
3 * * * *
V(s1) =-4 ' " | V(s3)=5
s1’s modified game

» Solve for the value of the modified game (using LP)
« Make this the new value of s1
« Do this for all states, repeat until convergence

« Similarly, analogs of policy iteration [Pollatschek & Avi-ltzhak] and
Q-Learning [Littman 94, Hu & Wellman 98] exist



