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Repeated games

• In a (typical) repeated game, 
– players play a normal-form game (aka. the stage game), 

– then they see what happened (and get the utilities),

– then they play again,

– etc.

• Can be repeated finitely or infinitely many times

• Really, an extensive form game
– Would like to find subgame-perfect equilibria

• One subgame-perfect equilibrium: keep repeating 
some Nash equilibrium of the stage game

• But are there other equilibria?



Finitely repeated Prisoner’s Dilemma

• Two players play the Prisoner’s Dilemma k times

2, 2 0, 3

3, 0 1, 1

• In the last round, it is dominant to defect

• Hence, in the second-to-last round, there is no way to 
influence what will happen

• So, it is optimal to defect in this round as well

• Etc.

• So the only equilibrium is to always defect

cooperate defect

cooperate

defect



Modified Prisoner’s Dilemma
• Suppose the following game is played twice

5, 5 0, 6 0, 6

6, 0 4, 4 1, 1

6, 0 1, 1 2, 2

• Consider the following strategy:
– In the first round, cooperate;

– In the second round, if someone defected in the first round, 
play defect2; otherwise, play defect1

• If both players play this, is that a subgame perfect 
equilibrium?

cooperate defect1

cooperate

defect2

defect2

defect1



Another modified Prisoner’s Dilemma
• Suppose the following game is played twice

5, 5 0, 6 1, 0

6, 0 4, 4 1, 0

0, 1 0, 1 0, 0

• What are the subgame perfect equilibria?

• Consider the following strategy:
– In the first round, cooperate;

– In the second round, if someone played defect or crazy in 
the first round, play crazy; otherwise, play defect

• Is this a Nash equilibrium (not subgame perfect)?

cooperate defect

cooperate

crazy

crazy

defect



Infinitely repeated games

• First problem: are we just going to add up the utilities 
over infinitely many rounds?
– Everyone gets infinity!

• (Limit of) average payoff: limn→∞Σ1≤t≤nu(t)/n
– Limit may not exist…

• Discounted payoff: Σtδ
tu(t) for some δ < 1



Infinitely repeated Prisoner’s Dilemma

• Tit-for-tat strategy:
– Cooperate the first round,

– In every later round, do the same thing as the other player did in the 
previous round

• Is both players playing this a Nash/subgame-perfect 
equilibrium?  Does it depend on δ?

• Trigger strategy:
– Cooperate as long as everyone cooperates

– Once a player defects, defect forever

• Is both players playing this a subgame-perfect equilibrium?

• What about one player playing tit-for-tat and the other playing 
trigger?

2, 2 0, 3

3, 0 1, 1

cooperate defect

cooperate

defect



Folk theorem(s)
• Can we somehow characterize the equilibria of infinitely 

repeated games?
– Subgame perfect or not?

– Averaged utilities or discounted?

• Easiest case: averaged utilities, no subgame perfection

• We will characterize what (averaged) utilities (u1, u2, …, 
un) the agents can get in equilibrium

• The utilities must be feasible: there must be outcomes of 
the game such that the agents, on average, get these 
utilities

• They must also be enforceable: deviation should lead to 
punishment that outweighs the benefits of deviation

• Folk theorem: a utility vector can be realized by some 
Nash equilibrium if and only if it is both feasible and 
enforceable



Feasibility

• The utility vector (2, 2) is feasible because it is one of 
the outcomes of the game

• The utility vector (1, 2.5) is also feasible, because the 
agents could alternate between (2, 2) and (0, 3)

• What about (.5, 2.75)?

• What about (3, 0.1)?

• In general, convex combinations of the outcomes of 
the game are feasible
– p1a1 + p2a2 + … + pnan is a convex combination of the ai if 

the pi sum to 1 and are nonnegative

2, 2 0, 3

3, 0 1, 1



Enforceability

• A utility for an agent is not enforceable if the agent 
can guarantee herself a higher utility

• E.g. a utility of .5 for player 1 is not enforceable, 
because she can guarantee herself a utility of 1 by 
defecting

• A utility of 1.2 for player 1 is enforceable, because 
player 2 can guarantee player 1 a utility of at most 1 
by defecting

• What is the relationship to minimax strategies & 
values?

2, 2 0, 3

3, 0 1, 1



Computing a Nash equilibrium in a 2-

player repeated game using folk theorem

• Average payoff, no subgame perfection

• Can be done in polynomial time:
– Compute minimum enforceable utility for each agent

• I.e., compute maxmin values & strategies

– Find a feasible point where both players receive at least 
this utility

• E.g., both players playing their maxmin strategies

– Players play feasible point (by rotating through the 
outcomes), unless the other deviates, in which case they 
punish the other player by playing minmax strategy forever

• Minmax strategy easy to compute

• A more complicated (and earlier) algorithm by Littman 
& Stone [04] computes a “nicer” and subgame-perfect 
equilibrium



Example Markov Decision Process (MDP)

• Machine can be in one of three states: good, 
deteriorating, broken

• Can take two actions: maintain, ignore



Stochastic games
• A stochastic game has multiple states that it can be in

• Each state corresponds to a normal-form game

• After a round, the game randomly transitions to another state

• Transition probabilities depend on state and actions taken

• Typically utilities are discounted over time

2, 2 0, 3

3, 0 1, 1

1, 1 1, 0

0, 1 0, 0

1, 0 0, 1

0, 1 1, 0.6

.4

.3

.5

.2

• 1-state stochastic game = (infinitely) repeated game

• 1-agent stochastic game = Markov Decision Process (MDP)



Stationary strategies

• A stationary strategy specifies a mixed strategy for 
each state
– Strategy does not depend on history

– E.g., in a repeated game, stationary strategy = always 
playing the same mixed strategy

• An equilibrium in stationary strategies always exists 
[Fink 64]

• Each player will have a value for being in each state



Shapley’s [1953] algorithm for 2-player 

zero-sum stochastic games (~value iteration)

• Each state s is arbitrarily given a value V(s)
– Player 1’s utility for being in state s

• Now, for each state, compute a normal-form game that takes 
these (discounted) values into account

* -3, 3
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* *
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* -3 + 2.9δ, 

3 - 2.9δ

* *V(s1) = -4

V(s2) = 2

V(s3) = 5

.7

.3

-3 + δ(.7*2 + .3*5) 

= -3 + 2.9δ

• Solve for the value of the modified game (using LP)

• Make this the new value of s1

• Do this for all states, repeat until convergence

• Similarly, analogs of policy iteration [Pollatschek & Avi-Itzhak] and 
Q-Learning [Littman 94, Hu & Wellman 98] exist 

s1’s modified game


