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ABSTRACT
Deciding query equivalence is an important problem in data man-
agement with many practical applications. Solving the problem,
however, is not an easy task. While there has been a lot of work
done in the database research community in reasoning about the
semantic equivalence of SQL queries, prior work mainly focuses
on theoretical limitations. In this paper, we present COSETTE, a
fully automated prover that can determine the equivalence of SQL
queries. COSETTE leverages recent advances in both automated
constraint solving and interactive theorem proving, and returns a
counterexample (in terms of input relations) if two queries are not
equivalent, or a proof of equivalence otherwise. Although the prob-
lem of determining equivalence for arbitrary SQL queries is unde-
cidable, our experiments show that COSETTE can determine the
equivalences of a wide range of queries that arise in practice, in-
cluding conjunctive queries, correlated queries, queries with outer
joins, and queries with aggregates. Using COSETTE, we have also
proved the validity of magic set rewrites, and confirmed various
real-world query rewrite errors, including the famous COUNT bug.
We are unaware of any prior tool that can automatically deter-
mine the equivalences of a broad range of queries as COSETTE,
and believe that our tool represents a major step towards building
provably-correct query optimizers for real-world database systems.

1. INTRODUCTION
Given two queries Q1 and Q2, the query equivalence problem

asks whether Q1 and Q2 are semantically equivalent, i.e., they al-
ways return the same results when executed on any input database
instance. This problem has many real-world applications in data
management. For instance, all query optimizers contain a plan gen-
erator that enumerates plans during query optimization [13], and
the enumerated plans should be semantically equivalent to the in-
put query. This applies to compilers for integrated query and appli-
cation languages as well [25, 14]. Determining query equivalences
is also important in generating test cases for database implemen-
tations [29], building teaching tools for developers [21], and auto-
grading student assignments [11].

While the problem has attracted much attention from the database
theory research community, prior work has focused mostly on the
theoretical limitations in solving the problem [31, 27, 20]. We are
unaware of any practical solvers that can determine query equiv-
alences, and this has unfortunately contributed to buggy database
implementations [17, 1, 3], and many widely deployed query rewrites
techniques like magic set rewrites [28] are left unverified.

In this paper, we present COSETTE, a solver that can determine
whether two SQL queries are semantically equivalent. COSETTE
builds on top of the recent advances in the formal methods research
community. In particular, COSETTE leverages the strengths of two

active branches of research from that community: symbolic execu-
tion and constraint solving, and interactive proving. Given a logic
formula containing symbolic (i.e., unknown) variables, constraint
solvers are developed with various specialized heuristics [16, 26]
that can efficiently find models, i.e., values for the symbolic vari-
ables, that make the formula true, or return unsatisfiable otherwise.
For instance, given the Boolean logic formula v1 && (v2 || v3)

== (v1 && v2) || (v1 && v3), a constraint solver might return
the model {v1:True, v2:True, v3:False}. Users typically use this
model-finding property of constraint solvers to show the falsity of
logic formulas: if the solver can find a model (also called a coun-
terexample in this case) for the negated formula, then the original
formula must be false. This strategy has been applied in numer-
ous real-world scenarios (e.g., [34, 12]). In fact, solvers are now
available for many different domains [7, 6], and there are annual
competitions for the most efficient solvers as well.

Interactive proof assistants [4, 5], on the other hand, do not come
with heuristics for finding models. They instead allow developers
to provide a proof script to derive the validity of logic formulas in
a step-by-step manner. For example, to prove the above Boolean
formula to be true for all possible values of v1, v2, and v3, one can
apply the distributivity property of logical conjunction to the left
side of the formula, and then check that the two sides are subse-
quently equal syntactically. This two step strategy can be encoded
in a proof script to be executed by the proof assistants, and can
furthermore be programmed into proof tactics that the proof as-
sistant can apply when similar formulas are subsequently encoun-
tered. Unlike constraint solvers, proof assistants are efficient in
searching for proofs, making them useful tools to demonstrate the
validity of formulas. As such, they have been used recently to prove
the correctness of many software systems [22, 19].

COSETTE combines the strengths of constraint solvers and proof
assistants to determine the equivalence of SQL queries. It con-
sists of two components: a compiler that translates the input SQL
queries into logic formulas, and subsequently uses a constraint solver
to find counterexamples to show that the input queries are not equiv-
alent; and a separate compiler translating queries into K-relations [18],
and then uses a proof assistant to validate the equivalence of the
two queries. The encoding of SQL to logic formulas allows us
find counter examples of inequivalent SQL queries by constraint
solvers. The encoding of SQL to K-Relations, which represents
a relation as mathematical function that takes as input a tuple and
returns its multiplicity in the relation, enables convenient machine
checkable proofs of equivalent queries in a proof assistant. As we
will see, this unique combination of proving techniques enables
COSETTE to efficiently determine the equivalence SQL queries.

The query equivalence problem for arbitrary SQL queries is un-
decidable in general. Trakthenbrot’s theorem [31, 23] states that



Figure 1: COSETTE architecture, where texts and arrows in
blue indicate user interactions.

the problem given an FO sentence ϕ, check if ϕ has a finite model
is undecidable. We can reduce this problem to query equivalence
by defining Q1 to be a query that checks checks ϕ and returns the
empty set if ϕ is false, or returns some non-empty set if ϕ is true,
and defining Q2 to be the query that always returns the empty set
(as above), then checking Q1 ≡ Q2). So an automated proof sys-
tem for SQL will never be complete. Our experiments show that
COSETTE can already determine equivalence for a wide variety of
real-world queries.

In summary, this paper makes the following contributions:
1. We develop COSETTE, a fully automated solver for SQL.

COSETTE leverages proof assistants to identify semantically
equivalent queries, and constraint solving to determine queries
that are inequivalent. To our knowledge COSETTE is the first
such solver for SQL queries.

2. COSETTE comes with a number of optimizations to make
solving efficient. In particular, our data model enables gen-
eration of constraints that are easy to solve, and we also de-
veloped a number of proof tactics to speed up proof search.
As we will explain, the design of COSETTE enables the two
components in COSETTE to complement each other to im-
prove solving efficiency. In addition, besides the fully au-
tomated mode, COSETTE also allows developers to interact
with the tool as well.

3. We have implemented a prototype of COSETTE, and our ex-
periments show that COSETTE can formally verify many well-
known SQL rewrite rules, including those based on relational
algebra, conjunctive queries, and magic set rewrites. In ad-
dition, it can disprove various query equivalences, including
the well-known COUNT bug, along with other real-world opti-
mizer bugs in Postgres and Oracle.

In the rest of this paper, we first describe the overall architecture
of COSETTE in Section 2. Section 3 then describes how COSETTE
translates the input queries into constraints, and Section 4 discusses
the use of proof assistant in showing the validity of two queries,
followed by its interactive aspects in Section 5. We report or ex-
periment results using both textbook and real-world queries in Sec-
tion 6, and discuss related work in Section 7.

2. OVERVIEW
Figure 1 shows the architecture of COSETTE. COSETTE takes in

two SQL queries and returns either “equivalent,” “inequivalent,” or
“unknown.” Besides the input queries, users can provide the actual
contents of the relations that the queries are executed on. If the

contents of all involved relations are provided, then determining
the equivalence of the two queries reduces to executing them and
checking if their result sets are the same. Otherwise, for the sym-
bolic relations, i.e., relations that are queried but whose contents
are not provided, COSETTE assumes that they can range over any
valid schemas and values. The goal of COSETTE then is to check
whether the input queries are equivalent when executed on all pos-
sible relations. To infer the schemas for the symbolic relations,
COSETTE scans the input queries for the attributes that are refer-
enced. For example, if Emp is a symbolic relation, and one of the
queries contains the predicate Emp.age > 21, then COSETTE will
infer that Emp contains at least the integer attribute age. COSETTE
assumes that symbolic relations with different names are distinct.
Furthermore, predicates can be symbolic as well, meaning that they
represent any Boolean functions that take tuples as input. As we
will see in Section 4, this is useful for checking the equivalences
of query rewrite rules that are part of query optimizers, where such
rules are often expressed over arbitrary predicates.

COSETTE passes the input queries to the two compilation toolchain
as discussed. On the one hand, the constraints generator trans-
lates the input queries into constraints. This involves bounding the
size of each symbolic relation and determining its schema. The
compiler then uses fresh symbolic variables to represent each of
the tuples in the symbolic relations, and translates the semantics of
the input queries into constraints over the symbolic variables. The
generated constraints are sent to a constraints solver. If the solver
returns a counterexample, then the input queries are proven to be
inequivalent, and the counterexample is returned to the user.

On the other hand, if the constraint solver cannot find a coun-
terexample, COSETTE will then forward the queries to the unino-
mial generator. The generator compiles the symbolic relations to
K-relations, which are mathematical functions that return the mul-
tiplicity of a given tuple, and translates the queries into algebraic
expressions over K-relations called UniNomials. The UniNomials
are sent to the proof assistant to look for an equivalence proof. If
the proof assistant fails to show their equivalence, it then interacts
with the constraints solver and the user to solicit a proof, as we will
explain in Section 5.

We next describe the constraints and uninomial generators in de-
tail, followed by evaluations using COSETTE.

3. FINDING COUNTEREXAMPLES WITH
CONSTRAINT SOLVER

In this section we describe how COSETTE translates input queries
into constraints using symbolic execution, with the generated con-
straints sent to a constraints solver in search of counterexamples.
If found, the input queries are proven to be inequivalent, and the
counterexamples are returned to the user as evidence.

To illustrate this process, we use the queries shown in Figure 3 as
a running example. The example illustrates the famous COUNT bug
that involves rewriting of correlated subqueries. It involves two
symbolic relations, Parts and Supply, with a derived view Temp.
Using the architecture of the constraint generator shown in Fig-
ure 2, we explain the solving process in detail below.

3.1 Data Model
COSETTE models relations using bag semantics. Following prior

modeling of relations [33, 24], in the constraints generator a tuple
is encoded as a list of integers (strings are modeled as integers, and
floating point numbers are currently not supported), and a relation
is defined as an unordered set of Pairs:

Tuple := List <Integer >



Figure 2: Architecture of the constraints generator its interac-
tion with the underlying constraint solver.

SELECT pnum FROM Parts -- Q1
WHERE qoh = (SELECT COUNT(shipdate)

FROM Supply
WHERE Supply.pnum = Parts.pnum
AND shipdate < 10);

WITH Temp AS -- Q2
SELECT pnum , COUNT(shipdate) AS ct
FROM Supply
WHERE shipdate < 10
GROUP BY pnum

SELECT pnum FROM Parts , Temp
WHERE Parts.qoh = Temp.ct
AND Parts.pnum = Temp.pnum;

Figure 3: Constraints generation example using the COUNT bug.

Relation := List <Pair <Tuple , Integer >>

Here the first element in the pair is a tuple, and the second el-
ement represents the multiplicity of the tuple. For example, the
list [([1,2],2),([2,5],3)] represents a relation with 2 tuples of
[1,2] and 3 tuples of [2,5].1

The constraints generator compiles each symbolic relation into
a set of fixed size consisting of symbolic values. For example, the
Parts symbolic relation in the running example is compiled to:

Parts = [([sv0 ,sv1],sv2), ([sv3 ,sv4],sv5)]
Supply = [([sv6 ,sv7],sv8)]

where each svi represents a symbolic value whose value will be
assigned by the solver. Note that the multiplicity of each tuple is a
symbolic value as well. In Section 3.4 we describe how COSETTE
uses incremental solving to dynamically increase the size of each
symbolic relation.

3.2 Compiling Queries to Constraint Programs
Given the data model, the symbolic execution engine in the con-

straints generator compiles a SQL query to a function written in
Rosette that computes over symbolic relations. Rosette [30] is a
language for constraints programming. When executed, the query
function will generate constraints that can be sent to the constraints
solver to solve. As an example, Q2 in Figure 3 is compiled to the

1We use bold font for tuple multiplicities for ease of read purpose.

function below2:

def Q2():
r = []
for t in xprod(Parts , Temp):

if p1(t) and p2(t):
r.append ([t[0]])

return r

In the code fragment, p1 represents the predicate Parts.qoh =
Temp, p2 is the predicate Parts.pnum = Temp.pnum, and xprod is
the Cartesian product operator on two relations that we have imple-
mented in Rosette. Just like its SQL counterpart, the constraint pro-
gram iterates over each tuple from the Cartesian product of Parts
and Temp, and appends the projection of the iterated tuple (t[0],
where 0 is the index of the projected pnum attribute) to the output
relation if it satisfies the two predicates. Unlike SQL queries, how-
ever, the contents of r is not a set of concrete tuples, but rather
a number of constraints that encodes the semantics of Q2 over the
input symbolic variables, as we will describe in Section 3.3.

Correlated Subqueries. Correlated subqueries (as in that in Q1)
are compiled in a similar manner, except that the generated query
functions take in a tuple from the enclosing query as parameter.
For example, the subquery in the WHERE clause in Q1 is compiled to
the procedure SubQ1 below (left), where out_t represents the tuple
that is passed in from the enclosing query. And Q1 is compiled to
procedure Q1 (right), with a call to SubQ1 on line 4.

def SubQ1(out_t):
r = []
for t in Supply:

if (t[0] == out_t [1]
and t[1] < 10):

r.append ([t[1]])
return [r.size()]

def Q1():
r = []
for t in Parts:

if t[1] == SubQ1(t):
r.append(t[0])

return r

Aggregation and Grouping. The constraint generator also sup-
ports aggregation functions such as COUNT, SUM, AVERAGE on indi-
vidual attributes. Grouping operations are rewritten to correlated
subqueries and aggregates on single-columned relations following
standard practice [10].

Other Features and Limitations. The COSETTE constraints
generator currently supports most standard SQL features: besides
features mentioned above, keywords including EXISTS, IN, LEFT
OUTER JOIN are also supported. Currently COSETTE does not sup-
port string operations (e.g., LIKE) since COSETTE currently does
not model strings as character arrays.

3.3 Generating Constraints
After compiling SQL queries to Rosette programs, they are ex-

ecuted by the Rosette runtime to generate constraints expressed in
SMT-LIB format [9]. For example, Q1 in Section 3.2 generates the
following set of constraints:

(assert r[0] =
(if (sv1 = subQ1 (([sv0 ,sv1],sv2))
then ([sv0],sv2)
else (if (sv4 = subQ1 (([sv3 ,sv4],sv5))

then ([sv3],sv5)
else Nil))

... ...

Note that the contents of r is a set of constraints. The constraint for
the first row of the table (i.e., r[0]), for instance, says that r[0]
equals to a single element list containing the second element (sv0)
2The part that computes Temp is not shown due to space.



from the table Parts with multiplicity sv2 if sv1 equals to the re-
sult of evaluating SubQ1 on the first tuple of the Parts table. Oth-
erwise, it equals to either ([sv3],sv5) or an empty list. Similar
constraints are generated for r[1] as well.

All these constraints restrict the set of choices that the constraint
solver can assign to each of the symbolic variables, a topic that we
discuss next.

3.4 Finding Counterexamples
After compiling queries to constraints over symbolic variables,

COSETTE send the constraints to the solver by asking it to find
a model to the formula Q1() 6=Q2(). As discussed in Section 1,
two queries are inequivalent if a model (i.e., a counterexample) is
found. While many solvers are available, in the current prototype
COSETTE uses solving is done using the solver that comes with
the Rosette runtime. On the other hand, if the solver is unable to
find a counterexample, that means either a counterexample does
not exist for the given size of the symbolic relations, or that the
two queries are equivalent. For the former, COSETTE will increase
the size of the symbolic relations and regenerate the constraints (as
shown in Figure 2) until a counter example found or predetermined
timeout. Once timed out, COSETTE will forward the queries to the
Uninomial generator and proof assistant, as we will describe next.

4. VALIDATING EQUIVALENCES WITH
PROOF ASSISTANT

While constraint solvers are efficient in disproving query equiv-
alences, they cannot be used directly to validate equivalences as
they only check on symbolic relations of bounded sizes (while true
equivalences have to hold for relations of any size). As discussed
in Section 1, in COSETTE, this is done by compiling the input
queries to UniNomials, and then generating a proof script that is
sent to a proof assistant to validate query equivalence. In this sec-
tion we discuss this process.

4.1 Data Model
Rather than modeling relations as lists as described in Section 3.1,

to prove query equivalences COSETTE instead models relation as
a mathematical function that takes in a tuple and returns its mul-
tiplicity as a cardinal number. In other words, a relation R has
type Tuple → N, and R(t) is the multiplicity of a tuple t in R,
with 0 meaning that t is not in R. This approach is inspired by
K-relations [18], and doing so allows COSETTE to compile SQL
queries to algebraic expressions consisting of operations such as
addition, multiplication, summation, and truncation (‖·‖) over car-
dinal numbers. We call such expressions UniNomials.3

By lifting SQL queries to UniNomials, proving the equivalence
of two SQL queries becomes proving the equality of two UniNo-
mials by syntactic comparison and the proof assistant’s built-in ax-
ioms. This greatly simplifies the proofs and enables automation.

4.2 Compiling to UniNomials
We demonstrate how COSETTE compiles SQL queries to Uni-

Nomials using the following query Q as an example:

SELECT x FROM R
WHERE EXISTS (SELECT * FROM S WHERE b) -- Q

Q contains two symbolic relations, R and S, and a symbolic predi-
cate b. First, the subquery on S is compiled to:

SubQ(to, t) : S(t)× b(to, t)

3We implemented UniNomials in Coq using Univalent types [15], hence
the name.

-- Q1
SELECT * FROM (R UNION ALL S)
WHERE b
-- Q2
(SELECT * FROM S WHERE b)
UNION ALL
(SELECT * FROM R WHERE b)

Q1(t) : b(t)× (R(t) + S(t))

Q2(t) : b(t)× S(t) + b(t)×R(t)

Lemma 1:
∀ t, Q1(t) = Q2(t).
Proof:
apply comm_plus.
apply dist_prod.
reflexivity.
Qed.

Figure 4: Sample queries, their compilation to UniNomials,
and script for their equivalence proof.

Given a tuple t, SubQ first computes its multiplicity in S, and
checks if it passes the symbolic predicate b. Here b is a function that
takes in t and the tuple from the enclosing query, t0, and returns 0
or 1. The multiplicity of t then equals to the product.

The existential predicate is compiled to another function ExistsQ:

ExistsQ(to) :
∥∥∥∑

u
SubQ(to, u)

∥∥∥
Given a tuple from the enclosing query to, ExistsQ checks whether
to is part of the results returned by the subquery. Conceptually,
checking is done by iterating over all possible tuples u and sum-
ming up the multiplicities returned by SubQ(to, u). Recall that if
u is not in S, then SubQ(to, u) = 0. Since ExistsQ is used as a
predicate, we use the truncation function to return 1 if the sum is
larger than 0, or 0 otherwise.

Finally, Q is compiled to:

Q(t) :
∑

u
R(u)× eq(u.x, t)× SubQ(t)

Given a tuple t, Q checks whether it satisfies the selection pred-
icate by passing it to SubQ. Then Q checks if t equals to the
projection of the x attribute of some tuple u in R by calling eq.
Like before, Q iterates over all possible tuples u and sum up the
multiplicities after multiplying the three terms together.

4.3 Proving Equivalences
After compiling SQL queries to UniNomials, COSETTE gener-

ates a proof script for the proof assistant to check for query equiva-
lence. The proof script contains instructions to break the proof goal
into multiple subgoals so that proving all subgoals is sufficient to
prove the original goal.

Figure 4 shows an example of two queries and their compilation
to UniNomials, along with the proof script to show their equiva-
lence. When executed, the proof assistant first applies the commu-
tativity of + and the distributivity of × over + to rewrite Q1(t) to
be syntactically identical as Q2(t), and then invoke the reflexivity
axiom to finish the equivalence proof.

4.4 Proof Automation
Proof assistants often come with tactics to automatically search

for proofs. In addition to the standard ones implemented in Coq,
we have implemented a number of new tactics for UniNomials in
COSETTE as described below.

HoTTRing Many proofs, such as the one in Figure 4, consist of
associative-commutative rewrites. HoTTRing attempts to re-arrange
UniNomial expressions into a standard form so that equality can be
easily decided using syntactic comparison.

Congruence Congruence applies transitivity to eliminate vari-
ables in the proof goal. Furthermore, it applies transitivity to higher-
order pure functions as well, i.e., ∀a, b.(a = b)⇒ (f(a) = f(b)).



CQSolve Conjunctive Query is a well-known subclass of SQL
with a complete decidable procedure for equivalence [15]. CQSolve
is used to decide conjunctive query equivalence in COSETTE.

DeductSolve If the input queries return sets (e.g., starts with
SELECT DISTINCT), DeductSolve turns the proof into bi-implication,
since the multiplicity of each tuple in the result is either 0 or 1. Fur-
thermore, the tactic splits the proof into two sub-proofs (Q1 → Q2

and Q2 → Q1), and applies other tactics to finish the proof.
Since the equivalence of two arbitrary SQL queries is undecid-

able [31], it is impossible to make the proof search completely
automatic. However, as we will discuss in Section 6, the tactics
described above enable COSETTE to automatically determine the
equivalences for many queries with practical applications.

5. INTERACTIVE PROVING
Deciding the equivalence of arbitrary SQL queries is undecid-

able [31]. Hence, in COSETTE, there are cases that the constraint
solver fails to find counterexamples, and the proof assistant cannot
find a valid equivalence proof. COSETTE is designed to be inter-
active for such cases, both between the two proof engines and also
with the user as we describe below.

5.1 Checking for Subgoal Validity
The proof assistant decomposes the equivalence proof goal into a

number of subgoals during the proving process. However, it might
not be able to prove some of the subgoals due to tactic limitations.
When that happens, COSETTE will translate these subgoals to con-
straints, and invoke the constraint solver to try to falsify these sub-
goals. If the constraint solver falsifies any subgoal, then this means
either the two queries are inequivalent (but the constraint solver
failed to find a counterexample due to size of the symbolic rela-
tions), or that the proof assistant decomposed the subgoals incor-
rectly (e.g., the subgoals are logically stronger than needed) In both
cases COSETTE will inform the user, may adjust the decomposition
or disprove the equality between the input queries.

5.2 Interactions with the User
In addition to the automated mode, COSETTE is designed to in-

teract with the user. First, if the constraint solver timed out while
finding counterexamples and the proof assistant cannot find a valid
proof, the proof goal expressed using UniNomials will be returned
to the user. The user can then rewrite her proof scripts with the
help of a library of lemmas provided by COSETTE, and resubmit
the proof to COSETTE. COSETTE will incorporate them as part of
the proof search procedure.

Second, a user can choose different tactics to break the proof goal
into multiple subgoals in the proof assistant. COSETTE will apply
automated tactics to try to solve these subgoals and only return the
unsolved ones to the user for manual proofs.

In general, interactive proving brings the user into the loop to
solve more advanced SQL queries. COSETTE is designed to be
both fully automated, and also leverage the user’s help via interac-
tion after reducing the amount of proof burden. However, in prac-
tice our experiments show that COSETTE can readily prove many
non-trivial query equivalences without user interactions as we will
describe next.

6. EVALUATION
We have implemented a prototype of the COSETTE solver using

Rosette (version 2.2) and Coq (version 8.5pl1). Our prototype in-
cludes 3k lines of Rosette code and 2k lines of Coq code. In this

Dataset Equiv.? Total
Number

Automatically
Decided Interactively

Decided
No. Avg Time

Bugs No 3 3 8.8 s -
Exams No 5 5 1.3 s -
XData No 9 9 < 1 s -
Rules Yes 23 17 < 1 s 6
Exams Yes 4 3 < 1 s 1

Figure 5: Evaluation Summary.

section we evaluate COSETTE’s ability to determine query equiva-
lence on four real-world datasets:

• Bugs contains 3 real-world bug reports including the COUNT bug [17],
and two other optimizer errors in real-world systems [1, 3].

• Exams is a set of questions from the undergraduate data man-
agement class [2] where students are asked to identify whether
two queries are equivalent or not.

• XData contains query and mutant pairs collected from XData [29].
Each mutant query is generated by mutating the original query,
and COSETTE is asked to identify if the mutant preserves the
original query’s semantics.

• Rules contains various classical SQL optimizer rewrite rules rang-
ing from relational algebra rewrites to conjunctive query equiva-
lences and others. The full list is described in [15].

Figure 5 shows the summary of the evaluation. COSETTE found
counterexamples for Bugs, all inequivalent queries in Exams and
all mutant queries listed in XData. We select a few inequivalent
queries and describe how COSETTE generates small counterexam-
ples for them below. COSETTE also automatically proved 17 out of
23 equivalent queries in Rules, with the remaining proved with in-
teraction. Among the automatically proven queries, 7 are conjunc-
tive queries that are proved using COSETTE’s CQSolve tactic. The
remaining are solved using other tactics discussed in Section 4.4.

6.1 Finding Counterexamples

The COUNT Bug. The COUNT bug is an incorrect optimizer rewrite
rule [17] expressed using Q1 and Q2 as shown in Figure 3. COSETTE
returns a counterexample containing the following two concrete ta-
bles when asked whether the two queries are equivalent:

pnum qoh multiplicity
0 0 8
2 2 15

pnum shipdate multiplicity
2 9 2

When executed, Q1 returns [([0],8), ([2],15)] while Q2 re-
turns [([2],15)]. COSETTE took 2 iterations to find the coun-
terexamples since the Parts table requires at least two unique tu-
ples to demonstrate the inequivalence.

Oracle 12c Optimizer Bug. We next asked COSETTE to de-
termine query equivalence of a real-world bug report on Oracle
12c [3]. In the report, the user mentioned that the result of the query
below is incorrect due to an optimizer bug where it converted the
first left outer join (Line 7) to a hash join. This resulted in a wrong
execution plan, since tuples from thing that have no match in tr
are removed by the hash join but retained by the original outer join.



1 --Table schemas:
2 -- thing(tid , tname), tr(rid , tid , type),
3 -- ta_status(rid , status), tb_status(rid , status)
4 SELECT t.tid , t.name , tas.status , tbs.status
5 FROM thing t LEFT JOIN tr
6 ON t.tid = tr.tid
7 LEFT JOIN ta_status tas
8 ON (tr.rid IS NOT NULL
9 AND tr.type = 1 AND tr.rid = tas.rid)

10 LEFT JOIN tb_status tbs
11 ON (tr.rid IS NOT NULL
12 AND tr.type = 2 AND tr.rid = tbs.rid)

Although the bug is difficult for users to identify, COSETTE iden-
tified the incorrectness of the optimization efficiently4: when fed
with the original and optimized queries into COSETTE, the coun-
terexample below is returned:

thing = [([0,0],15)] tr = []
ta_status = [([0,0],4)] tb_status = [([0,0],3)]

Given the generated counter example, the original query evaluates
to [([0,0,null,null],15)] while the incorrect optimized query eval-
uates to an empty table, indicating that the rewrite is incorrect.

Two Inequivalent Queries from Exams. One question from the
exams ask students whether the two queries below are equivalent:

SELECT x.uid , x.uname , -- Q1
(SELECT count (*) FROM Picture y
WHERE x.uid = y.uid AND y.num > 1000000)

FROM Usr x
WHERE x.city = ’Denver ’;

SELECT x.uid , x.uname , COUNT (*) -- Q2
FROM Usr x, Picture y
WHERE x.uid = y.uid AND y.num > 1000000

AND x.city = ’Denver ’
GROUP BY x.uid , x.uname;

Q1 and Q2 are inequivalent as Q2 filtered out all the cities that are
not ’Denver’ first, so the count only considers ’Denver’ tuples,
whereas Q1 counts all tuples prior to filtering. COSETTE took 3
iterations to find a counterexample.

6.2 Proving Equivalence of SQL Queries
Two Queries from Exams. The following is one of the questions
from the Exams dataset:

SELECT DISTINCT x.uid , x.uname -- Q1
FROM Usr x, Picture u, Picture v, Picture w
WHERE x.uid = u.uid AND x.uid = v.uid

AND x.uid = w.uid AND u.size > 1000000
AND v.size < 3000000 AND w.size = u.size;

SELECT DISTINCT x.uid , x.uname -- Q2
FROM Usr x, Picture u, Picture v, Picture w
WHERE x.uid = u.uid AND x.uid = v.uid

AND x.uid = w.uid AND u.size > 1000000
AND v.size < 3000000 AND w.size = v.size;

While Q1 and Q2 are not conjunctive queries, COSETTE proves Q1
= Q2 using DeductSolve as they both return sets.

Magic Set. Magic set rewrites are widely used to improve the
performance of complex decision support queries [28]. Magic set
rewrites can be decompose to a set of rewrites using semi-joins,
with one of them expressed using the following two SQL queries:

SELECT * FROM R, S WHERE b; -- Q1
SELECT * FROM (R SEMIJOIN S ON b), S WHERE b; -- Q2

Here b is a symbolic predicate. COSETTE first rewrites the semijoin
into join and then compile the queries into UniNomials as follows:

Q1(t) : b(t)×R(t.R.∗)× S(t.S.∗)
Q2(t) : b(t)× ‖Σub(t.R.∗, u)× S(u)‖ ×R(t.R.∗)× S(t.S.∗)

4COSETTE currently uses integers to model strings.

Here t.R.∗ projects all attributes of R from t, and similarly for
t.S.∗. Proving the equivalence of Q1 and Q2 cannot be done auto-
matically. We proved the equivalence interactively by first calling
HoTTRing to rewrite the UniNomials to:

Q1(t) : b(t)×R(t.R.∗)× S(t.S.∗)
Q2(t) : b(t)×R(t.R.∗)× S(t.S.∗)× ‖Σub(t.R.∗, u))× S(u)‖

Then we manually applied the lemma: ∀T, P : N, if P is either 0
or 1, then (T → P )⇒ (T = T × P ). After applying this lemma
with T = Q1, and P = ‖Σub(t.R.∗, u))× S(u)‖, we only need
to prove the implication using the tactics described in Section 4.4.

7. RELATED WORK
Query equivalence is a topic that has been studied extensively.

As discussed in Section 1, prior work focuses on the decidability
of the problem, with most classes of queries proven to be undecid-
able [31, 27]. One notable exception is conjunctive queries where
a complete decision procedure is available [8].

While there has been work on applying formal methods to query
execution, they focus on building a provably-correct database im-
plementation [24] or test generation [33]. The data models used
in COSETTE are inspired by prior work on modeling relations, in-
cluding work on test generation [33] and program compilation [14].
To our knowledge COSETTE is the first tool that supports deciding
both equivalence and inequivalence of SQL queries.

Finally, there are also various SQL test generation tools avail-
able. Such tools use techniques like mutation [29] and classifica-
tion [32] to generate test data. COSETTE instead relies on formal
methods to formally prove the equivalence of queries.

8. CONCLUSION
We presented COSETTE, the first solver for SQL queries that

leverages recent advances in formal methods. While COSETTE
cannot solve equivalences of all SQL queries due to theoretical lim-
itations, our experiments show that it can efficiently determine the
equivalences of a wide variety of real-world queries.
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