
15896/15483 Truth, Justice, and Algorithms
Fall 2018 Procaccia and Psomas HW 1

Due October 1, 2018, at 11:59pm
1. Cake Cutting (30 points: 20/10)

Consider the cake cutting problem with n players and valuation functions v1, . . . ,vn satisfying ad-
ditivity, normalization, and divisibility. Denote the social welfare of an allocation AAA by sw(AAA) =
∑

n
i=1 vi(Ai).

(a) Show that for all valuation functions v1, . . . ,vn,

sup{sw(AAA) : AAA is an allocation of the cake}
sup{sw(AAA) : AAA is a proportional allocation of the cake}

= O(
√

n).

(b) Give a family of examples of v1, . . . ,vn (one example for each value of n) such that

sup{sw(AAA) : AAA is an allocation of the cake}
sup{sw(AAA) : AAA is a proportional allocation of the cake}

= Ω(
√

n).

2. The Partial Nash Algorithm (25 points: 5/10/10)

Consider a setting with a set M of m divisible goods and a set N of n players. Define an allocation
x ∈ Rn×m as an n×m matrix in which xi j denotes the fraction of good j allocated to player i. Let
F = {x |xi j ≥ 0 and ∑i xi j ≤ 1} denote the set of feasible allocations. Lastly, assume that each player
i has a homogeneous valuation function vi : Rn×m→R; i.e., each player i’s valuation for the allocation
x′ = c · x satisfies vi(x′) = c · vi(x) for any c≥ 0.

We define Nash Fairness (NF) as follows. An allocation x∗ is Nash fair if, for any other allocation x′,
the total proportional change in valuations is not positive; i.e.,

∑
i∈N

vi(x′)− vi(x∗)
vi(x∗)

≤ 0.

It is known that an NF allocation exists, and, in fact, it is the unique allocation that maximizes the
Nash product ∏i∈N vi(x); you may rely on this fact in your solution.

The Partial Nash (PN) algorithm first computes the NF allocation x∗, and then assigns each player i a
fraction of x∗i that depends on the extent to which the presence of i inconveniences the other players
(i.e., decreases the value of other players).

Algorithm 1 Partial Nash (PN) algorithm
1: Compute the NF allocation x∗ based on the reported bids.
2: For each player i, remove her and compute the NF allocation x∗−i that would occur in her absence.
3: Allocate to each player i a fraction fi of everything she receives according to x∗, where

fi =
∏i′ 6=i vi′(x∗)

∏i′ 6=i vi′(x∗−i)
.
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(a) Show that the allocation produced by the PN algorithm is feasible.

(b) Prove that the PN algorithm is strategyproof; that is, no player can benefit by reporting untruth-
fully.

(c) Prove that the PN algorithm always yields an allocation such that, for every player i, vi(x) ≥
1
e · vi(x∗); i.e., it provides a 1/e approximation of the optimal allocation.

Hint. Given a sequence of n real numbers d1, . . . ,dn such that ∑
n
i=1 di ≤ 1, ∏

n
i=1(1 + di) ≤

(1+1/n)n.

3. 1/2-EFX (30 points: 20/10)

Consider a setting with n players and a set G of m indivisible goods. Let~v = (v1, . . . ,vn) represent the
additive valuation functions of the n players and assume that all players have positive valuations for
all items.

As mentioned in class, it is an open problem whether EFX allocations exist in settings with more than
two players; therefore, in this problem, we consider a relaxation of EFX. Define an allocation to be
1/2-EFX if, for any two players i and j, i’s value for j’s bundle minus any good is at most twice i’s
value for her own bundle.

Definition 1. An allocation AAA is 1/2-EFX if, for all i and j, ∀g ∈ A j, vi(Ai)≥ (1/2) · vi(A j \{g}).

Consider the following algorithm for finding a 1/2-EFX allocation for n players.

Algorithm 2 1/2-EFX Allocation
Require: n,G,(v1, . . . ,vn) . Input: players, goods, and valuation functions

1: P← G . Initialize: all goods in pool
2: for i ∈ [n] do
3: Ai← /0 . Initialize: all players start with no goods
4: end for
5: while P 6= /0 do . Repeat while pool not empty
6: g∗← pop(P) . Remove an arbitrary good from the pool
7: j← FindUnenviedPlayer(AAA) . and give it to an unenvied player
8: A j← A j ∪{g∗}
9: if ∃i ∈ [n], g ∈ A j such that vi(Ai)<

1
2 vi(A j \{g}) then . if this breaks 1/2-EFX

10: P← P∪Ai . Return i’s old allocation to the pool
11: A j← A j \{g∗}
12: Ai←{g∗} . and give i {g∗}
13: end if
14: A← RemoveEnvyCycles(AAA) . Ensure the envy graph is acyclic
15: end while

You may assume that FindUnenviedPlayer always returns an unenvied player (if one exists). Fur-
thermore, given a 1/2-EFX allocation with an envy graph that contains cycles, RemoveEnvyCycles
returns a 1/2-EFX allocation with an acyclic envy graph. Note that, in this algorithm, RemoveEnvy-
Cycles ensures that when FindUnenviedPlayer is called, an unenvied player does exist.

(a) Prove that at the beginning of each iteration of the while loop, the partial allocation is 1/2-EFX.

(b) Prove that the algorithm terminates.
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Hint. Consider what happens to the social welfare in each round.

4. Random EF Allocations (20 points)

Consider a setting with m indivisible goods and n players with additive valuations, where each player
has value drawn i.i.d. and uniformly at random from [0,1] for each good. Prove that for any constant
number of players n≥ 2, the probability that an EF allocation exists goes to 1 as the number of goods
m goes to infinity (that is, an EF allocation exists with high probability).

Hint. k-th order statistics. Given X1, . . . ,Xn i.i.d. random variables drawn uniformly at random from
[0,1], the expectation of the k-th smallest value is k

n+1 .

Hint. Hoeffding’s inequality. Hoeffding’s inequality provides an upper bound on the probability that
the sum of (bounded) independent random variables deviates from its expected value by more than
a prescribed amount. Let X1, . . . ,Xn be independent random variables where each Xi is bounded by
[ai,bi]. Now, define the random variable X as the sum of all Xi’s: X = X1 + · · ·+Xn. Hoeffding’s
inequality states that

Pr [|X−E[X ]| ≥ t]≤ 2exp
(

−2t2

∑
n
i=1(bi−ai)2

)
.
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