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Kernel Density Estimation
Approximate the underlying PDF from samples

Put ‘bump’ on every sample to approximate the PDF

To understand the mean shift algorithm …
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samples

place Gaussian bumps on the samples…



samples



samples



samples



1      2      3      4      5      6      7      8      9    10

samples

Kernel Density 
Estimate  

approximates the 
original PDF



Kernel Density Estimation
Approximate the underlying PDF from samples from it

Put ‘bump’ on every sample to approximate the PDF

p(x) =
X

i

cie
� (x�xi)

2

2�2

Gaussian ‘bump’ aka ‘kernel’



K(x,x0)

Kernel Function

a ‘distance’ between two points



Epanechnikov kernel

Uniform kernel

Normal kernel

K(x,x0
) = c exp

✓
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kx� x

0k2
◆

K(x,x0
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0 otherwise
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0k2) kx� x

0k2  1

0 otherwise

Radially symmetric kernels



Radially symmetric kernels

K(x,x0) = c · k(kx� x

0k2)

profile

…can be written in terms of its profile



Connecting KDE and the 
Mean Shift Algorithm
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{xs}Ss=1

Mean-Shift Tracking
Given a set of points:

and a kernel:

Find the mean sample point:

K(x,x0) = c · k(kx� x

0k2)

xs 2 Rd

x



Mean-Shift Algorithm

While

Initialize

m(x) =

P
s K(x,xs)xsP
s K(x,xs)

1. Compute mean-shift

x

2. Update

Where does this algorithm come from?

v(x) = m(x)� x

v(x) > ✏

x x+ v(x)



While

Initialize
x

Where does this algorithm come from?

Where does this 
come from?

Mean-Shift Algorithm

2. Update

v(x) > ✏

x x+ v(x)

1. Compute mean-shift

m(x) =

P
s K(x,xs)xsP
s K(x,xs)

v(x) = m(x)� x



Kernel density estimate  
(radially symmetric kernels)

P (x) =
1

N
c
X

n

k(kx� xnk2)

Gradient of the PDF is related to the mean shift vector

How is the KDE related to the mean shift algorithm?

rP (x) / m(x)

The mean shift is a ‘step’ in the direction of the gradient of the KDE

Recall:

We can show that:



In mean-shift tracking, we are trying to find this

which  means we are trying to…



We are trying to optimize this:

x = argmax

x

P (x)

= argmax

x

1

N
c
X

n

k(||x� xn||2)

usually non-linear

How do we optimize this non-linear function?

non-parametric



We are trying to optimize this:

x = argmax

x

P (x)

= argmax

x

1

N
c
X

n

k(||x� xn||2)

How do we optimize this non-linear function?
compute partial derivatives, gradient descent

usually non-linear non-parametric



P (x) =
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k(kx� xnk2)

Compute the gradient



P (x) =
1
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X
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rP (x) =
1

N
c
X

n

rk(kx� xnk2)Gradient

Expand the gradient (algebra)
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Expand gradient
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Gradient

Expand gradient

Call the gradient of the kernel function g

k0(·) = �g(·)
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rP (x) =
1
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1
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rP (x) =
1

N
2c

X

n

(xn � x)g(kx� xnk2)

k0(·) = �g(·)

Gradient

change of notation 
(kernel-shadow pairs)

Expand gradient

keep this in memory:



rP (x) =
1

N
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N
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multiply it out

too long!  
(use short hand notation)
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multiply by one!

collecting like terms…

Does this look familiar?
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The mean shift is a ‘step’ in the direction of the gradient of the KDE
{

mean shift!

mean shift

Gradient ascent with adaptive step size

v(x)

{

constant



Mean-Shift Algorithm

While

Initialize

m(x) =

P
s K(x,xs)xsP
s K(x,xs)

1. Compute mean-shift

x

2. Update

v(x) = m(x)� x

v(x) > ✏

x x+ v(x)m(x) =

✓P
n xngnP
n gn

� x

◆
=

rP (x)
1
N 2c

P
n gn

gradient with 
adaptive step size



Everything up to now has been about  
distributions over samples…



Dealing with images
Pixels for a lattice, spatial density is the same everywhere!

What can we do?



Consider a set of points: {xs}Ss=1 xs 2 Rd

Sample mean:

Mean shift: m(x)� x

Associated weights: w(xs)

m(x) =

P
s K(x,xs)w(xs)xsP
s K(x,xs)w(xs)



Mean-Shift Algorithm

While

Initialize

1. Compute mean-shift

x

2. Update

v(x) = m(x)� x

v(x) > ✏

x x+ v(x)

m(x) =

P
s K(x,xs)w(xs)xsP
s K(x,xs)w(xs)



For images, each pixel is point with a weight
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For images, each pixel is point with a weight



For images, each pixel is point with a weight



Finally… mean shift tracking in video



Frame 1 Frame 2

‘target’

x

center coordinate 
of target

center coordinate 
of candidatey

Goal: find the best candidate location in frame 2

Use the mean shift algorithm  
to find the best candidate location

‘candidate’
there are many ‘candidates’ but only one ‘target’



Non-rigid object tracking



Target

Compute a descriptor for the target



Target Candidate

Search for similar descriptor in neighborhood in next frame



Target

Compute a descriptor for the new target



Target Candidate

Search for similar descriptor in neighborhood in next frame



How do we model the target and candidate regions?



Modeling the target

q = {q1, . . . , qM}
M-dimensional target descriptor

A normalized  
color histogram 

(weighted by distance)
Kronecker delta 

function

function of inverse 
distance 
(weight)

Normalization 
factor

(centered at target center)

qm = C
X

n

k(kxnk2)�[b(xn)�m]

a ‘fancy’ (confusing) way to write a weighted histogram

sum over 
all pixels

quantization 
function

bin ID



Modeling the candidate
M-dimensional candidate descriptor

p(y) = {p1(y), . . . , pM (y}
(centered at location y)

pm = Ch

X

n

k

 ����
y � xn

h

����
2
!
�[b(xn)�m]

bandwidth

y0

a weighted histogram at y



Similarity between  
the target and candidate

Bhattacharyya Coefficient

Just the Cosine distance between two unit vectors

⇢(y) ⌘ ⇢[p(y), q] =
X

m

p
pm(y)qu

⇢(y) = cos ✓y =

p(y)>q

kpkkqk =

X

m

p
pm(y)qm

✓

p(y)

q

d(y) =
p

1� ⇢[p(y), q]Distance function



Now we can compute the similarity between a target and 
multiple candidate regions



target

similarity over imageimage

⇢[p(y), q]p(y)

q



target

similarity over imageimage

we want to find this peak

⇢[p(y), q]p(y)

q



Objective function

Assuming a good initial guess
⇢[p(y0 + y), q]

Linearize around the initial guess (Taylor series expansion)

derivativefunction at specified value

⇢[p(y), q] ⇡ 1

2

X

m

p
pm(y0)qm +

1

2

X

m

pm(y)

r
qm

pm(y0)

max

y
⇢[p(y), q]min

y
d(y) same as



Remember 
definition of this?pm = Ch
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⇢[p(y), q] ⇡ 1

2

X

m

p
pm(y0)qm +
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2

X

m

pm(y)

r
qm

pm(y0)

⇢[p(y), q] ⇡ 1

2

X

m

p
pm(y0)qm +

1

2

X

m

(
Ch

X

n

k
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y � xn
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�[b(xn)�m]

)r
qm

pm(y0)

Linearized objective

Fully expanded



⇢[p(y), q] ⇡ 1

2
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⇢[p(y), q] ⇡ 1
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wn =
X

m

r
qm

pm(y0)
�[b(xn)�m]where

Does not depend on unknown y Weighted kernel density estimate

qm > pm(y0)Weight is bigger when

Fully expanded linearized objective

Moving terms around…



OK, why are we doing all this math?



max

y
⇢[p(y), q]

We want to maximize this
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Fully expanded linearized objective

We want to maximize this
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Fully expanded linearized objective

doesn’t depend on unknown y

We want to maximize this
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Fully expanded linearized objective

doesn’t depend on unknown y

We want to maximize this

only need to 
maximize this!
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wn =
X

m

r
qm

pm(y0)
�[b(xn)�m]where

Fully expanded linearized objective

doesn’t depend on unknown y

what can we use to solve this weighted KDE?

Mean Shift Algorithm!

We want to maximize this



Ch

2

X

n

wnk
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the new sample of mean of this KDE is

(this was derived earlier)
y1 =

P
n xnwng

✓���y0�xn

h

���
2
◆

P
n wng

✓���y0�xn

h

���
2
◆

(new candidate 
location)



Mean-Shift Object Tracking

1. Initialize location  
Compute 
Compute  

2. Derive weights 

3. Shift to new candidate location (mean shift) 

4. Compute 

5. If                             return  
Otherwise                      and go back to 2

y0
q
p(y0)

wn

y1

p(y1)

ky0 � y1k < ✏
y0  y1

For each frame:



Target

Compute a descriptor for the target

q



Target Candidate

Search for similar descriptor in neighborhood in next frame

max

y
⇢[p(y), q]



Target

Compute a descriptor for the new target

q



Target Candidate

Search for similar descriptor in neighborhood in next frame

max

y
⇢[p(y), q]




