
Mean-Shift Tracker
16-385 Computer Vision (Kris Kitani)

Carnegie Mellon University

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Find the region of
highest density

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Pick a point

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Draw a window

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Compute the mean

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Shift the window

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Compute the mean

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Shift the window

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Compute the mean

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Shift the window

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Compute the mean

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Shift the window

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Compute the mean

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Shift the window

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Compute the mean

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Shift the window

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Compute the mean

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Shift the window

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Compute the mean

Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Shift the window

Kernel Density Estimation
16-385 Computer Vision (Kris Kitani)

Carnegie Mellon University

Kernel Density Estimation
Approximate the underlying PDF from samples

Put ‘bump’ on every sample to approximate the PDF

To understand the mean shift algorithm …

probability density function
1 2 3 4 5 6 7 8 9 10

cumulative density function

p(x)

ra
nd

om
ly

 s
am

pl
e

0

1

ra
nd

om
ly

 s
am

pl
e

0

1

ra
nd

om
ly

 s
am

pl
e

0

1

samples

samples

place Gaussian bumps on the samples…

samples

samples

samples

1 2 3 4 5 6 7 8 9 10

samples

Kernel Density
Estimate

approximates the
original PDF

Kernel Density Estimation
Approximate the underlying PDF from samples from it

Put ‘bump’ on every sample to approximate the PDF

p(x) =
X

i

cie
� (x�xi)

2

2�2

Gaussian ‘bump’ aka ‘kernel’

K(x,x0)

Kernel Function

a ‘distance’ between two points

Epanechnikov kernel

Uniform kernel

Normal kernel

K(x,x0
) = c exp

✓
1

2

kx� x

0k2
◆

K(x,x0
) =

⇢
c kx� x

0k2 1

0 otherwise

K(x,x0
) =

⇢
c(1� kx� x

0k2) kx� x

0k2 1

0 otherwise

Radially symmetric kernels

Radially symmetric kernels

K(x,x0) = c · k(kx� x

0k2)

profile

…can be written in terms of its profile

Connecting KDE and the
Mean Shift Algorithm

Mean-Shift Tracker
16-385 Computer Vision (Kris Kitani)

Carnegie Mellon University

{xs}Ss=1

Mean-Shift Tracking
Given a set of points:

and a kernel:

Find the mean sample point:

K(x,x0) = c · k(kx� x

0k2)

xs 2 Rd

x

Mean-Shift Algorithm

While

Initialize

m(x) =

P
s K(x,xs)xsP
s K(x,xs)

1. Compute mean-shift

x

2. Update

Where does this algorithm come from?

v(x) = m(x)� x

v(x) > ✏

x x+ v(x)

While

Initialize
x

Where does this algorithm come from?

Where does this
come from?

Mean-Shift Algorithm

2. Update

v(x) > ✏

x x+ v(x)

1. Compute mean-shift

m(x) =

P
s K(x,xs)xsP
s K(x,xs)

v(x) = m(x)� x

Kernel density estimate
(radially symmetric kernels)

P (x) =
1

N
c
X

n

k(kx� xnk2)

Gradient of the PDF is related to the mean shift vector

How is the KDE related to the mean shift algorithm?

rP (x) / m(x)

The mean shift is a ‘step’ in the direction of the gradient of the KDE

Recall:

We can show that:

In mean-shift tracking, we are trying to find this

which means we are trying to…

We are trying to optimize this:

x = argmax

x

P (x)

= argmax

x

1

N
c
X

n

k(||x� xn||2)

usually non-linear

How do we optimize this non-linear function?

non-parametric

We are trying to optimize this:

x = argmax

x

P (x)

= argmax

x

1

N
c
X

n

k(||x� xn||2)

How do we optimize this non-linear function?
compute partial derivatives, gradient descent

usually non-linear non-parametric

P (x) =
1

N
c
X

n

k(kx� xnk2)

Compute the gradient

P (x) =
1

N
c
X

n

k(kx� xnk2)

rP (x) =
1

N
c
X

n

rk(kx� xnk2)Gradient

Expand the gradient (algebra)

P (x) =
1

N
c
X

n

k(kx� xnk2)

rP (x) =
1

N
c
X

n

rk(kx� xnk2)

rP (x) =
1

N
2c

X

n

(x� xn)k
0(kx� xnk2)

Gradient

Expand gradient

P (x) =
1

N
c
X

n

k(kx� xnk2)

rP (x) =
1

N
c
X

n

rk(kx� xnk2)

rP (x) =
1

N
2c

X

n

(x� xn)k
0(kx� xnk2)

Gradient

Expand gradient

Call the gradient of the kernel function g

k0(·) = �g(·)

P (x) =
1

N
c
X

n

k(kx� xnk2)

rP (x) =
1

N
c
X

n

rk(kx� xnk2)

rP (x) =
1

N
2c

X

n

(x� xn)k
0(kx� xnk2)

rP (x) =
1

N
2c

X

n

(xn � x)g(kx� xnk2)

k0(·) = �g(·)

Gradient

change of notation
(kernel-shadow pairs)

Expand gradient

keep this in memory:

rP (x) =
1

N
2c

X

n

(xn � x)g(kx� xnk2)

rP (x) =
1

N
2c

X

n

xng(kx� xnk2)�
1

N
2c

X

n

xg(kx� xnk2)

multiply it out

too long!
(use short hand notation)

rP (x) =
1

N
2c

X

n

xngn � 1

N
2c

X

n

xgn

rP (x) =
1

N
2c

X

n

xngn � 1

N
2c

X

n

xgn

rP (x) =
1

N
2c

X

n

xngn

✓P
n gnP
n gn

◆
� 1

N
2c

X

n

xgn

rP (x) =
1

N
2c

X

n

gn

✓P
n xngnP
n gn

� x

◆

multiply by one!

collecting like terms…

Does this look familiar?

rP (x) =
1

N
2c

X

n

gn

✓P
n xngnP
n gn

� x

◆

m(x) =

✓P
n xngnP
n gn

� x

◆
=

rP (x)
1
N 2c

P
n gn

The mean shift is a ‘step’ in the direction of the gradient of the KDE
{

mean shift!

mean shift

Gradient ascent with adaptive step size

v(x)

{

constant

Mean-Shift Algorithm

While

Initialize

m(x) =

P
s K(x,xs)xsP
s K(x,xs)

1. Compute mean-shift

x

2. Update

v(x) = m(x)� x

v(x) > ✏

x x+ v(x)m(x) =

✓P
n xngnP
n gn

� x

◆
=

rP (x)
1
N 2c

P
n gn

gradient with
adaptive step size

Everything up to now has been about
distributions over samples…

Dealing with images
Pixels for a lattice, spatial density is the same everywhere!

What can we do?

Consider a set of points: {xs}Ss=1 xs 2 Rd

Sample mean:

Mean shift: m(x)� x

Associated weights: w(xs)

m(x) =

P
s K(x,xs)w(xs)xsP
s K(x,xs)w(xs)

Mean-Shift Algorithm

While

Initialize

1. Compute mean-shift

x

2. Update

v(x) = m(x)� x

v(x) > ✏

x x+ v(x)

m(x) =

P
s K(x,xs)w(xs)xsP
s K(x,xs)w(xs)

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

Finally… mean shift tracking in video

Frame 1 Frame 2

‘target’

x

center coordinate
of target

center coordinate
of candidatey

Goal: find the best candidate location in frame 2

Use the mean shift algorithm
to find the best candidate location

‘candidate’
there are many ‘candidates’ but only one ‘target’

Non-rigid object tracking

Target

Compute a descriptor for the target

Target Candidate

Search for similar descriptor in neighborhood in next frame

Target

Compute a descriptor for the new target

Target Candidate

Search for similar descriptor in neighborhood in next frame

How do we model the target and candidate regions?

Modeling the target

q = {q1, . . . , qM}
M-dimensional target descriptor

A normalized
color histogram

(weighted by distance)
Kronecker delta

function

function of inverse
distance
(weight)

Normalization
factor

(centered at target center)

qm = C
X

n

k(kxnk2)�[b(xn)�m]

a ‘fancy’ (confusing) way to write a weighted histogram

sum over
all pixels

quantization
function

bin ID

Modeling the candidate
M-dimensional candidate descriptor

p(y) = {p1(y), . . . , pM (y}
(centered at location y)

pm = Ch

X

n

k

 ����
y � xn

h

����
2
!
�[b(xn)�m]

bandwidth

y0

a weighted histogram at y

Similarity between
the target and candidate

Bhattacharyya Coefficient

Just the Cosine distance between two unit vectors

⇢(y) ⌘ ⇢[p(y), q] =
X

m

p
pm(y)qu

⇢(y) = cos ✓y =

p(y)>q

kpkkqk =

X

m

p
pm(y)qm

✓

p(y)

q

d(y) =
p

1� ⇢[p(y), q]Distance function

Now we can compute the similarity between a target and
multiple candidate regions

target

similarity over imageimage

⇢[p(y), q]p(y)

q

target

similarity over imageimage

we want to find this peak

⇢[p(y), q]p(y)

q

Objective function

Assuming a good initial guess
⇢[p(y0 + y), q]

Linearize around the initial guess (Taylor series expansion)

derivativefunction at specified value

⇢[p(y), q] ⇡ 1

2

X

m

p
pm(y0)qm +

1

2

X

m

pm(y)

r
qm

pm(y0)

max

y
⇢[p(y), q]min

y
d(y) same as

Remember
definition of this?pm = Ch

X

n

k

 ����
y � xn

h

����
2
!
�[b(xn)�m]

⇢[p(y), q] ⇡ 1

2

X

m

p
pm(y0)qm +

1

2

X

m

pm(y)

r
qm

pm(y0)

⇢[p(y), q] ⇡ 1

2

X

m

p
pm(y0)qm +

1

2

X

m

(
Ch

X

n

k

 ����
y � xn

h

����
2
!
�[b(xn)�m]

)r
qm

pm(y0)

Linearized objective

Fully expanded

⇢[p(y), q] ⇡ 1

2

X

m

p
pm(y0)qm +

Ch

2

X

n

wnk

 ����
y � xn

h

����
2
!

⇢[p(y), q] ⇡ 1

2

X

m

p
pm(y0)qm +

1

2

X

m

(
Ch

X

n

k

 ����
y � xn

h

����
2
!
�[b(xn)�m]

)r
qm

pm(y0)

wn =
X

m

r
qm

pm(y0)
�[b(xn)�m]where

Does not depend on unknown y Weighted kernel density estimate

qm > pm(y0)Weight is bigger when

Fully expanded linearized objective

Moving terms around…

OK, why are we doing all this math?

max

y
⇢[p(y), q]

We want to maximize this

max

y
⇢[p(y), q]

⇢[p(y), q] ⇡ 1

2

X

m

p
pm(y0)qm +

Ch

2

X

n

wnk

 ����
y � xn

h

����
2
!

wn =
X

m

r
qm

pm(y0)
�[b(xn)�m]where

Fully expanded linearized objective

We want to maximize this

max

y
⇢[p(y), q]

⇢[p(y), q] ⇡ 1

2

X

m

p
pm(y0)qm +

Ch

2

X

n

wnk

 ����
y � xn

h

����
2
!

wn =
X

m

r
qm

pm(y0)
�[b(xn)�m]where

Fully expanded linearized objective

doesn’t depend on unknown y

We want to maximize this

max

y
⇢[p(y), q]

⇢[p(y), q] ⇡ 1

2

X

m

p
pm(y0)qm +

Ch

2

X

n

wnk

 ����
y � xn

h

����
2
!

wn =
X

m

r
qm

pm(y0)
�[b(xn)�m]where

Fully expanded linearized objective

doesn’t depend on unknown y

We want to maximize this

only need to
maximize this!

max

y
⇢[p(y), q]

⇢[p(y), q] ⇡ 1

2

X

m

p
pm(y0)qm +

Ch

2

X

n

wnk

 ����
y � xn

h

����
2
!

wn =
X

m

r
qm

pm(y0)
�[b(xn)�m]where

Fully expanded linearized objective

doesn’t depend on unknown y

what can we use to solve this weighted KDE?

Mean Shift Algorithm!

We want to maximize this

Ch

2

X

n

wnk

 ����
y � xn

h

����
2
!

the new sample of mean of this KDE is

(this was derived earlier)
y1 =

P
n xnwng

✓���y0�xn

h

���
2
◆

P
n wng

✓���y0�xn

h

���
2
◆

(new candidate
location)

Mean-Shift Object Tracking

1. Initialize location  
Compute 
Compute

2. Derive weights

3. Shift to new candidate location (mean shift)

4. Compute

5. If return  
Otherwise and go back to 2

y0
q
p(y0)

wn

y1

p(y1)

ky0 � y1k < ✏
y0 y1

For each frame:

Target

Compute a descriptor for the target

q

Target Candidate

Search for similar descriptor in neighborhood in next frame

max

y
⇢[p(y), q]

Target

Compute a descriptor for the new target

q

Target Candidate

Search for similar descriptor in neighborhood in next frame

max

y
⇢[p(y), q]

