

# Mean-Shift Tracker 

16-385 Computer Vision (Kris Kitani)
Carnegie Mellon University


## Mean Shift Algorithm

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)

## Mean Shift Algorithm

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)

Find the region of highest density

## Mean Shift Algorithm

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)

Pick a point

## Mean Shift Algorithm

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)

Draw a window


## Mean Shift Algorithm

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)

Compute the mean


# Mean Shift Algorithm <br> A 'mode seeking' algorithm 

Fukunaga \& Hostetler (1975)

Shift the window


# Mean Shift Algorithm 

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)

Compute the mean

## Mean Shift Algorithm

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)

Shift the window


## Mean Shift Algorithm

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)

## Compute the mean



## Mean Shift Algorithm

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)

## Shift the window



## Mean Shift Algorithm

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)

Compute the mean


## Mean Shift Algorithm

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)


## Mean Shift Algorithm

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)

## Compute the mean

## Mean Shift Algorithm

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)

## Shift the window



## Mean Shift Algorithm

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)

## Compute the mean

## Mean Shift Algorithm

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)

Shift the window


## Mean Shift Algorithm

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)

## Compute the mean

## Mean Shift Algorithm

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)

Shift the window


# Mean Shift Algorithm 

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)

Compute the mean


## Mean Shift Algorithm

A 'mode seeking' algorithm
Fukunaga \& Hostetler (1975)



## Kernel Density Estimation

16-385 Computer Vision (Kris Kitani)
Carnegie Mellon University

To understand the mean shift algorithm ...

## Kernel Density Estimation

Approximate the underlying PDF from samples


Put 'bump' on every sample to approximate the PDF


cumulative density function



place Gaussian bumps on the samples...

samples

samples



## Kernel Density Estimation

Approximate the underlying PDF from samples from it


Put 'bump' on every sample to approximate the PDF

## Kernel Function

$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)
$$

a 'distance’ between two points

## Epanechnikov kernel



$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)= \begin{cases}c\left(1-\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2}\right) & \left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Uniform kernel


$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)= \begin{cases}c & \left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Normal kernel


$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=c \exp \left(\frac{1}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2}\right)
$$

## Radially symmetric kernels

...can be written in terms of its profile

$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=c \overbrace{\text { profile }}^{c} k\left(\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2}\right)
$$

# Connecting KDE and the Mean Shift Algorithm 



# Mean-Shift Tracker 

16-385 Computer Vision (Kris Kitani)
Carnegie Mellon University

## Mean-Shift Tracking

Given a set of points:

$$
\left\{\boldsymbol{x}_{s}\right\}_{s=1}^{S} \quad \boldsymbol{x}_{s} \in \mathcal{R}^{d}
$$

## and a kernel:

$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)
$$

Find the mean sample point:
$\boldsymbol{x}$

## Mean-Shift Algorithm

Initialize $\boldsymbol{x}$
While $v(\boldsymbol{x})>\epsilon$

1. Compute mean-shift

$$
\begin{aligned}
m(\boldsymbol{x}) & =\frac{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right) \boldsymbol{x}_{s}}{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right)} \\
v(\boldsymbol{x}) & =m(\boldsymbol{x})-\boldsymbol{x}
\end{aligned}
$$

2. Update $\boldsymbol{x} \leftarrow \boldsymbol{x}+\boldsymbol{v}(\boldsymbol{x})$

## Mean-Shift Algorithm

Initialize $\boldsymbol{x}$
While $v(\boldsymbol{x})>\epsilon$

Where does this come from?

1. Compute mean-shift

$$
m(\boldsymbol{x})=\frac{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right) \boldsymbol{x}_{s}}{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right)}
$$

$$
v(\boldsymbol{x})=m(\boldsymbol{x})-\boldsymbol{x}
$$

2. Update $\boldsymbol{x} \leftarrow \boldsymbol{x}+\boldsymbol{v}(\boldsymbol{x})$

## How is the KDE related to the mean shift algorithm?

Recall:
Kernel density estimate
(radially symmetric kernels)

$$
P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

## We can show that:

Gradient of the PDF is related to the mean shift vector

$$
\nabla P(\boldsymbol{x}) \propto m(\boldsymbol{x})
$$

The mean shift is a 'step' in the direction of the gradient of the KDE

In mean-shift tracking, we are trying to find this

which means we are trying to...

## We are trying to optimize this:

$\boldsymbol{x}=\underset{\boldsymbol{x}}{\arg \max } P(\boldsymbol{x})$
$=\underset{\boldsymbol{x}}{\arg \max } \frac{1}{N} c \sum_{n} \underset{\text { usually non-linear }}{k} \overbrace{\text { non-parametric }}$
How do we optimize this non-linear function?

## We are trying to optimize this:

$$
\boldsymbol{x}=\underset{\boldsymbol{x}}{\arg \max } P(\boldsymbol{x})
$$

$$
=\underset{\boldsymbol{x}}{\arg \max } \frac{1}{N} c \sum_{n} \underset{\text { usually non-linear }}{ } k\left(\| \boldsymbol{x}-{\underset{\uparrow}{n}}_{\left.\boldsymbol{x}_{n} \|^{2}\right)}^{\text {non-parametric }}\right.
$$

How do we optimize this non-linear function?

$$
P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

Compute the gradient

$$
P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

Gradient

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} \nabla k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

Expand the gradient (algebra)

$$
P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

Gradient

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} \nabla k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

Expand gradient $\quad \nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n}\left(\boldsymbol{x}-\boldsymbol{x}_{n}\right) k^{\prime}\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)$

$$
P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

Gradient

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} \nabla k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

Expand gradient $\quad \nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n}\left(\boldsymbol{x}-\boldsymbol{x}_{n}\right) k^{\prime}\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)$

Call the gradient of the kernel function $g$

$$
k^{\prime}(\cdot)=-g(\cdot)
$$

Gradient

$$
P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} \nabla k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

Expand gradient $\quad \nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n}\left(\boldsymbol{x}-\boldsymbol{x}_{n}\right) k^{\prime}\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)$
change of notation (kernel-shadow pairs)

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n}\left(\boldsymbol{x}_{n}-\boldsymbol{x}\right) g\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n}\left(\boldsymbol{x}_{n}-\boldsymbol{x}\right) g\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

## multiply it out

$\nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n} \boldsymbol{x}_{n} g\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)-\frac{1}{N} 2 c \sum_{n} \boldsymbol{x} g\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)$
too long!
(use short hand notation)

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n} \boldsymbol{x}_{n} g_{n}-\frac{1}{N} 2 c \sum_{n} \boldsymbol{x} g_{n}
$$

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n} \boldsymbol{x}_{n} g_{n}-\frac{1}{N} 2 c \sum_{n} \boldsymbol{x} g_{n}
$$

multiply by one!

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n} \boldsymbol{x}_{n} g_{n}\left(\frac{\sum_{n} g_{n}}{\sum_{n} g_{n}}\right)-\frac{1}{N} 2 c \sum_{n} \boldsymbol{x} g_{n}
$$

collecting like terms...

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n} g_{n}\left(\frac{\sum_{n} \boldsymbol{x}_{n} g_{n}}{\sum_{n} g_{n}}-\boldsymbol{x}\right)
$$



The mean shift is a 'step' in the direction of the gradient of the KDE

$$
\boldsymbol{v}(\boldsymbol{x})=\left(\frac{\sum_{n} \boldsymbol{x}_{n} g_{n}}{\sum_{n} g_{n}}-\boldsymbol{x}\right)=\frac{\nabla P(\boldsymbol{x})}{\frac{1}{N} 2 c \sum_{n} g_{n}}
$$

## Mean-Shift Algorithm

Initialize $\boldsymbol{x}$
While $v(\boldsymbol{x})>\epsilon$

1. Compute mean-shift

$$
\begin{aligned}
m(\boldsymbol{x}) & =\frac{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right) \boldsymbol{x}_{s}}{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right)} \\
v(\boldsymbol{x}) & =m(\boldsymbol{x})-\boldsymbol{x}
\end{aligned}
$$

2. Update $\boldsymbol{x} \leftarrow \boldsymbol{x}+\boldsymbol{v}(\boldsymbol{x}) \quad \frac{\nabla P(\boldsymbol{x})}{\frac{1}{N} 2 c \sum_{n} g_{n}}$

## Everything up to now has been about distributions over samples...

## Dealing with images

Pixels for a lattice, spatial density is the same everywhere!

What can we do?

Consider a set of points: $\quad\left\{\boldsymbol{x}_{s}\right\}_{s=1}^{S} \quad \boldsymbol{x}_{s} \in \mathcal{R}^{d}$

Associated weights:

Sample mean:

$$
m(\boldsymbol{x})=\frac{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right) w\left(\boldsymbol{x}_{s}\right) \boldsymbol{x}_{s}}{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right) w\left(\boldsymbol{x}_{s}\right)}
$$

Mean shift:

$$
m(\boldsymbol{x})-\boldsymbol{x}
$$

## Mean-Shift Algorithm

Initialize $\boldsymbol{x}$
While $v(\boldsymbol{x})>\epsilon$

1. Compute mean-shift

$$
\begin{aligned}
& m(\boldsymbol{x})=\frac{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right) w\left(\boldsymbol{x}_{s}\right) \boldsymbol{x}_{s}}{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right) w\left(\boldsymbol{x}_{s}\right)} \\
& v(\boldsymbol{x})=m(\boldsymbol{x})-\boldsymbol{x}
\end{aligned}
$$

2. Update $\boldsymbol{x} \leftarrow \boldsymbol{x}+\boldsymbol{v}(\boldsymbol{x})$

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight


For images, each pixel is point with a weight


For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight


For images, each pixel is point with a weight


For images, each pixel is point with a weight


For images, each pixel is point with a weight


For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight


Finally... mean shift tracking in video

Goal: find the best candidate location in frame 2


Frame 1

there are many 'candidates' but only one 'target'
Frame 2

Use the mean shift algorithm to find the best candidate location

Non-rigid object tracking


Compute a descriptor for the target


Target

Search for similar descriptor in neighborhood in next frame


Target
Candidate

Compute a descriptor for the new target


Target

Search for similar descriptor in neighborhood in next frame


Target
Candidate

How do we model the target and candidate regions?

## Modeling the target



## M-dimensional target descriptor $\boldsymbol{q}=\left\{q_{1}, \ldots, q_{M}\right\}$ <br> (centered at target center)

a 'fancy' (confusing) way to write a weighted histogram


## Modeling the candidate

M-dimensional candidate descriptor

$$
\boldsymbol{p}(\boldsymbol{y})=\left\{p_{1}(\boldsymbol{y}), \ldots, p_{M}(\boldsymbol{y}\}\right.
$$

(centered at location $\mathbf{y}$ )
a weighted histogram at y

$$
p_{m}=C_{h} \sum_{n} k\left(\left\|\frac{\boldsymbol{y}-\boldsymbol{x}_{n}}{h_{\Sigma}}\right\|^{2}\right) \delta\left[b\left(\boldsymbol{x}_{n}\right)-m\right]
$$



# Similarity between the target and candidate 

Distance function

$$
d(\boldsymbol{y})=\sqrt{1-\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]}
$$

Bhattacharyya Coefficient

$$
\rho(y) \equiv \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]=\sum_{m} \sqrt{p_{m}(\boldsymbol{y}) q_{u}}
$$

Just the Cosine distance between two unit vectors

$$
\rho(\boldsymbol{y})=\cos \theta \boldsymbol{y}=\frac{\boldsymbol{p}(\boldsymbol{y})^{\top} \boldsymbol{q}}{\|\boldsymbol{p}\|\|\boldsymbol{q}\|}=\sum_{m} \sqrt{p_{m}(\boldsymbol{y}) q_{m}}
$$



Now we can compute the similarity between a target and multiple candidate regions

## $\boldsymbol{q}$ target


we want to find this peak
$p(y)$

image
similarity over image

## Objective function

$$
\min _{\boldsymbol{y}} d(\boldsymbol{y}) \quad \text { same as } \quad \max _{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]
$$

Assuming a good initial guess

$$
\rho\left[\boldsymbol{p}\left(\boldsymbol{y}_{0}+\boldsymbol{y}\right), \boldsymbol{q}\right]
$$

Linearize around the initial guess (Taylor series expansion)

$$
\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_{m}\left(\boldsymbol{y}_{0}\right) q_{m}}+\frac{1}{2} \sum_{m} p_{m}(\boldsymbol{y}) \sqrt{\frac{q_{m}}{p_{m}\left(\boldsymbol{y}_{0}\right)}}
$$

## Linearized objective

$$
\begin{aligned}
\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] & \approx \frac{1}{2} \sum_{m} \sqrt{p_{m}\left(\boldsymbol{y}_{0}\right) q_{m}}+\frac{1}{2} \sum_{m} p_{m}(\boldsymbol{y}) \sqrt{\frac{q_{m}}{p_{m}\left(\boldsymbol{y}_{0}\right)}} \\
p_{m} & =C_{h} \sum_{n} k\left(\left\|\frac{\boldsymbol{y}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right) \delta\left[b\left(\boldsymbol{x}_{n}\right)-m\right] \begin{array}{c}
\text { Remember } \\
\text { definition of this? }
\end{array}
\end{aligned}
$$

Fully expanded

$$
\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_{m}\left(\boldsymbol{y}_{0}\right) q_{m}}+\frac{1}{2} \sum_{m}\left\{C_{h} \sum_{n} k\left(\left\|\frac{\boldsymbol{y}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right) \delta\left[b\left(\boldsymbol{x}_{n}\right)-m\right]\right\} \sqrt{\frac{q_{m}}{p_{m}\left(\boldsymbol{y}_{0}\right)}}
$$

Fully expanded linearized objective

$$
\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_{m}\left(\boldsymbol{y}_{0}\right) q_{m}}+\frac{1}{2} \sum_{m}\left\{C_{h} \sum_{n} k\left(\left\|\frac{\boldsymbol{y}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right) \delta\left[b\left(\boldsymbol{x}_{n}\right)-m\right]\right\} \sqrt{\frac{q_{m}}{p_{m}\left(\boldsymbol{y}_{0}\right)}}
$$

Moving terms around...

$$
\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_{m}\left(\boldsymbol{y}_{0}\right) q_{m}}+\frac{C_{h}}{2} \sum_{n} w_{n} k\left(\left\|\frac{\boldsymbol{y}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right)
$$

Does not depend on unknown $\mathbf{y}$
Weighted kernel density estimate
where $\quad w_{n}=\sum_{m} \sqrt{\frac{q_{m}}{p_{m}\left(\boldsymbol{y}_{0}\right)}} \delta\left[b\left(\boldsymbol{x}_{n}\right)-m\right]$
Weight is bigger when $q_{m}>p_{m}\left(\boldsymbol{y}_{0}\right)$

OK, why are we doing all this math?

## We want to maximize this

## $\max \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$ $\boldsymbol{y}$

## We want to maximize this

## $\max _{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$

Fully expanded linearized objective

$$
\begin{gathered}
\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_{m}\left(\boldsymbol{y}_{0}\right) q_{m}}+\frac{C_{h}}{2} \sum_{n} w_{n} k\left(\left\|\frac{\boldsymbol{y}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right) \\
\text { where } w_{n}=\sum_{m} \sqrt{\frac{q_{m}}{p_{m}\left(\boldsymbol{y}_{0}\right)}} \delta\left[b\left(\boldsymbol{x}_{n}\right)-m\right]
\end{gathered}
$$

## We want to maximize this

## $\max _{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$

Fully expanded linearized objective

$$
\begin{aligned}
& \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \underset{\substack{\text { doesn't depend on unknown } \mathbf{y}}}{\frac{1}{2} \sum_{m} \sqrt{p_{m}\left(\boldsymbol{y}_{0}\right) q_{m}}+\frac{C_{h}}{2} \sum_{n} w_{n} k\left(\left\|\frac{\boldsymbol{y}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right), ~(\|)} \\
& \text { where } \quad w_{n}=\sum_{m} \sqrt{\frac{q_{m}}{p_{m}\left(\boldsymbol{y}_{0}\right)}} \delta\left[b\left(\boldsymbol{x}_{n}\right)-m\right]
\end{aligned}
$$

## We want to maximize this

## $\max _{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$ $\boldsymbol{y}$

only need to maximize this!
Fully expanded linearized objective

$$
\begin{aligned}
& \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \underset{\text { doesn't depend on unknown } \mathbf{y}}{\frac{1}{2} \sum_{m} \sqrt{p_{m}\left(\boldsymbol{y}_{0}\right)} q_{m}}+\frac{C_{h}}{2} \sum_{n} w_{n} k\left(\left\|\frac{\boldsymbol{y}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right) \\
& \text { where } \quad w_{n}=\sum_{m} \sqrt{\frac{q_{m}}{p_{m}\left(\boldsymbol{y}_{0}\right)}} \delta\left[b\left(\boldsymbol{x}_{n}\right)-m\right]
\end{aligned}
$$

## We want to maximize this

$$
\max _{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]
$$

Fully expanded linearized objective
what can we use to solve this weighted KDE?
Mean Shift Algorithm!

$$
\frac{C_{h}}{2} \sum_{n} w_{n k}\left(\left\|\frac{y-x_{n}}{h}\right\|^{2}\right)
$$

the new sample of mean of this KDE is

$$
\underset{\substack{\text { (new candidate } \\ \text { location) }}}{\boldsymbol{y}_{1}}=\frac{\sum_{n} \boldsymbol{x}_{n} w_{n} g\left(\left\|\frac{\boldsymbol{y}_{0}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right)}{\sum_{n} w_{n} g\left(\left\|\frac{\boldsymbol{y}_{0}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right)}
$$

## Mean-Shift Object Tracking

For each frame:

1. Initialize location $\boldsymbol{y}_{0}$

Compute $\boldsymbol{q}$
Compute $\boldsymbol{p}\left(\boldsymbol{y}_{0}\right)$
2. Derive weights $w_{n}$
3. Shift to new candidate location (mean shift) $\boldsymbol{y}_{1}$
4. Compute $\boldsymbol{p}\left(\boldsymbol{y}_{1}\right)$
5. If $\left\|\boldsymbol{y}_{0}-\boldsymbol{y}_{1}\right\|<\epsilon$ return

Otherwise $\quad \boldsymbol{y}_{0} \leftarrow \boldsymbol{y}_{1}$ and go back to 2

Compute a descriptor for the target


Target
$\boldsymbol{q}$

Search for similar descriptor in neighborhood in next frame


Target
Candidate

$$
\max _{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]
$$

Compute a descriptor for the new target


> Target $$
\boldsymbol{q}
$$

Search for similar descriptor in neighborhood in next frame


Target
Candidate $\max _{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$


