

Mean-Shift Tracker

16-385 Computer Vision (Kris Kitani) Carnegie Mellon University

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

Kernel Density Estimation

16-385 Computer Vision (Kris Kitani) Carnegie Mellon University To understand the mean shift algorithm ...

Kernel Density Estimation

Approximate the underlying PDF from samples

Put 'bump' on every sample to approximate the PDF

cumulative density function

randomly sample

place Gaussian bumps on the samples...

Kernel Density Estimation

Approximate the underlying PDF from samples from it

Put 'bump' on every sample to approximate the PDF

Kernel Function

 $K(\boldsymbol{x}, \boldsymbol{x}')$

a 'distance' between two points

Epanechnikov kernel

$$K(\boldsymbol{x}, \boldsymbol{x}') = \begin{cases} c(1 - \|\boldsymbol{x} - \boldsymbol{x}'\|^2) & \|\boldsymbol{x} - \boldsymbol{x}'\|^2 \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

Uniform kernel

$$K(\boldsymbol{x}, \boldsymbol{x}') = \begin{cases} c & \|\boldsymbol{x} - \boldsymbol{x}'\|^2 \leq 1\\ 0 & \text{otherwise} \end{cases}$$

Normal kernel

$$K(\boldsymbol{x}, \boldsymbol{x}') = c \exp\left(\frac{1}{2} \|\boldsymbol{x} - \boldsymbol{x}'\|^2\right)$$

Radially symmetric kernels

Radially symmetric kernels

... can be written in terms of its profile

$$K(\boldsymbol{x}, \boldsymbol{x}') = c \cdot k(\|\boldsymbol{x} - \boldsymbol{x}'\|^2)$$
(profile

Connecting KDE and the Mean Shift Algorithm

Mean-Shift Tracker

16-385 Computer Vision (Kris Kitani) Carnegie Mellon University

Mean-Shift Tracking

Given a set of points:

Find the mean sample point:

 $\boldsymbol{\mathcal{X}}$

Mean-Shift Algorithm

Initialize
$$x$$

While $v(\boldsymbol{x}) > \epsilon$

1. Compute mean-shift

$$m(\boldsymbol{x}) = \frac{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_{s}) \boldsymbol{x}_{s}}{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_{s})}$$
$$v(\boldsymbol{x}) = m(\boldsymbol{x}) - \boldsymbol{x}$$

2. Update $\boldsymbol{x} \leftarrow \boldsymbol{x} + \boldsymbol{v}(\boldsymbol{x})$

Where does this algorithm come from?

Mean-Shift Algorithm

2. Update $x \leftarrow x + v(x)$

Where does this algorithm come from?

How is the KDE related to the mean shift algorithm?

Recall:
Kernel density estimate
(radially symmetric kernels)

$$P(\boldsymbol{x}) = \frac{1}{N}c\sum_{n}k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

We can show that:

Gradient of the PDF is related to the mean shift vector $\nabla P({\pmb x}) \propto m({\pmb x})$

The mean shift is a 'step' in the direction of the gradient of the KDE

which means we are trying to...

We are trying to optimize this:

How do we optimize this non-linear function?

We are trying to optimize this:

How do we optimize this non-linear function?

compute partial derivatives, gradient descent

$$P(\boldsymbol{x}) = \frac{1}{N} c \sum_{n} k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

Compute the gradient

$$P(\boldsymbol{x}) = \frac{1}{N} c \sum_{n} k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} c \sum_{n} \nabla k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

Expand the gradient (algebra)

$$P(\boldsymbol{x}) = \frac{1}{N} c \sum_{n} k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

nt
$$\nabla P(\boldsymbol{x}) = \frac{1}{N} c \sum_{n} \nabla k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

Gradient

Expand gradient

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} (\boldsymbol{x} - \boldsymbol{x}_{n}) k'(\|\boldsymbol{x} - \boldsymbol{x}_{n}\|^{2})$$

$$P(\boldsymbol{x}) = \frac{1}{N} c \sum_{n} k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

ent
$$\nabla P(\boldsymbol{x}) = \frac{1}{N} c \sum_{n} \nabla k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

Gradient

Expand gradient

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} (\boldsymbol{x} - \boldsymbol{x}_{n}) k'(\|\boldsymbol{x} - \boldsymbol{x}_{n}\|^{2})$$

Call the gradient of the kernel function g

$$k'(\cdot) = -g(\cdot)$$

$$P(\boldsymbol{x}) = \frac{1}{N} c \sum_{n} k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

ient
$$\nabla P(\boldsymbol{x}) = \frac{1}{N} c \sum_{n} \nabla k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

Gradient

Expand gradient

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} (\boldsymbol{x} - \boldsymbol{x}_{n}) k'(\|\boldsymbol{x} - \boldsymbol{x}_{n}\|^{2})$$

change of notation (kernel-shadow pairs)

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} (\boldsymbol{x}_{n} - \boldsymbol{x}) g(\|\boldsymbol{x} - \boldsymbol{x}_{n}\|^{2})$$

keep this in memory: $k'(\cdot) = -g(\cdot)$

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} (\boldsymbol{x}_{n} - \boldsymbol{x}) g(\|\boldsymbol{x} - \boldsymbol{x}_{n}\|^{2})$$

multiply it out

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} \boldsymbol{x}_{n} g(\|\boldsymbol{x} - \boldsymbol{x}_{n}\|^{2}) - \frac{1}{N} 2c \sum_{n} \boldsymbol{x} g(\|\boldsymbol{x} - \boldsymbol{x}_{n}\|^{2})$$

too long! (use short hand notation)

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} \boldsymbol{x}_{n} g_{n} - \frac{1}{N} 2c \sum_{n} \boldsymbol{x} g_{n}$$

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} \boldsymbol{x}_{n} g_{n} - \frac{1}{N} 2c \sum_{n} \boldsymbol{x} g_{n}$$

multiply by one!

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} \boldsymbol{x}_{n} g_{n} \left(\frac{\sum_{n} g_{n}}{\sum_{n} g_{n}} \right) - \frac{1}{N} 2c \sum_{n} \boldsymbol{x} g_{n}$$

collecting like terms...

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} g_{n} \left(\frac{\sum_{n} \boldsymbol{x}_{n} g_{n}}{\sum_{n} g_{n}} - \boldsymbol{x} \right)$$

Does this look familiar?

The **mean shift** is a 'step' in the direction of the gradient of the KDE

$$\boldsymbol{v}(\boldsymbol{x}) = \left(\frac{\sum_{n} \boldsymbol{x}_{n} g_{n}}{\sum_{n} g_{n}} - \boldsymbol{x}\right) = \frac{\nabla P(\boldsymbol{x})}{\frac{1}{N} 2c \sum_{n} g_{n}}$$

Gradient ascent with adaptive step size

Mean-Shift Algorithm

Initialize
$$oldsymbol{x}$$

While $v({m x}) > \epsilon$

1. Compute mean-shift

$$m(\boldsymbol{x}) = \frac{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_{s}) \boldsymbol{x}_{s}}{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_{s})}$$
$$v(\boldsymbol{x}) = m(\boldsymbol{x}) - \boldsymbol{x}$$
gradient with adaptive step size 2. Update $\boldsymbol{x} \leftarrow \boldsymbol{x} + \boldsymbol{v}(\boldsymbol{x})$
$$\frac{\nabla P(\boldsymbol{x})}{\frac{1}{N} 2c \sum_{n} g_{n}}$$

Everything up to now has been about distributions over samples...

Dealing with images

Pixels for a lattice, spatial density is the same everywhere!

What can we do?

Consider a set of points: $\{ \boldsymbol{x}_s \}_{s=1}^S$ $\boldsymbol{x}_s \in \mathcal{R}^d$

Associated weights:

 $w(oldsymbol{x}_s)$

Sample mean:

$$m(\boldsymbol{x}) = \frac{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_{s}) w(\boldsymbol{x}_{s}) \boldsymbol{x}_{s}}{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_{s}) w(\boldsymbol{x}_{s})}$$

Mean shift:

 $m(\boldsymbol{x}) - \boldsymbol{x}$

Mean-Shift Algorithm

Initialize
$$oldsymbol{x}$$

While $v(\boldsymbol{x}) > \epsilon$

1. Compute mean-shift

$$m(\boldsymbol{x}) = \frac{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_{s}) \boldsymbol{w}(\boldsymbol{x}_{s}) \boldsymbol{x}_{s}}{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_{s}) \boldsymbol{w}(\boldsymbol{x}_{s})}$$
$$v(\boldsymbol{x}) = m(\boldsymbol{x}) - \boldsymbol{x}$$

2. Update $x \leftarrow x + v(x)$

For images, each pixel is point with a weight

Finally... mean shift tracking in video

Goal: find the best candidate location in frame 2

Frame 1

Frame 2

Use the mean shift algorithm to find the best candidate location

Non-rigid object tracking

Compute a descriptor for the target

Target

Search for similar descriptor in neighborhood in next frame

Target Candidate

Compute a descriptor for the new target

Target

Search for similar descriptor in neighborhood in next frame

Target

Candidate

How do we model the target and candidate regions?

Modeling the target

M-dimensional **target** descriptor $\boldsymbol{q} = \{q_1, \dots, q_M\}$ (centered at target center)

a 'fancy' (confusing) way to write a weighted histogram

A normalized color histogram (weighted by distance)

Modeling the candidate

Y

M-dimensional candidate descriptor $p(y) = \{p_1(y), \dots, p_M(y)\}$

(centered at location **y**)

a weighted histogram at y

$$p_{m} = C_{h} \sum_{n} k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_{n}}{h} \right\|^{2} \right) \delta[b(\boldsymbol{x}_{n}) - m]$$

bandwidth

Similarity between the target and candidate

$$d(\boldsymbol{y}) = \sqrt{1 - \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]}$$

Bhattacharyya Coefficient

Distance function

$$\rho(y) \equiv \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] = \sum_{m} \sqrt{p_m(\boldsymbol{y})q_u}$$

Just the Cosine distance between two unit vectors

$$\rho(\boldsymbol{y}) = \cos \theta_{\boldsymbol{y}} = \frac{\boldsymbol{p}(\boldsymbol{y})^{\top} \boldsymbol{q}}{\|\boldsymbol{p}\| \|\boldsymbol{q}\|} = \sum_{m} \sqrt{p_{m}(\boldsymbol{y})q_{m}}$$

Now we can compute the similarity between a target and multiple candidate regions

similarity over image

image

similarity over image

 $\boldsymbol{p}(\boldsymbol{y})$

Objective function

same as

 $\max_{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$

Assuming a good initial guess $\rho[\pmb{p}(\pmb{y}_0+\pmb{y}),\pmb{q}]$

Linearize around the initial guess (Taylor series expansion)

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{1}{2} \sum_{m} p_m(\boldsymbol{y}) \sqrt{\frac{q_m}{p_m(\boldsymbol{y}_0)}}$$

function at specified value

derivative

Linearized objective

$$\rho[\mathbf{p}(\mathbf{y}), \mathbf{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\mathbf{y}_0)q_m} + \frac{1}{2} \sum_{m} p_m(\mathbf{y}) \sqrt{\frac{q_m}{p_m(\mathbf{y}_0)}}$$
$$p_m = C_h \sum_{n} k \left(\left\| \frac{\mathbf{y} - \mathbf{x}_n}{h} \right\|^2 \right) \delta[b(\mathbf{x}_n) - m] \quad \stackrel{\text{Remember}}{\text{definition of this}?}$$

$$\text{Fully expanded} \\ \rho[\mathbf{p}(\mathbf{y}), \mathbf{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\mathbf{y}_0)q_m} + \frac{1}{2} \sum_{m} \left\{ C_h \sum_{n} k\left(\left\| \frac{\mathbf{y} - \mathbf{x}_n}{h} \right\|^2 \right) \delta[b(\mathbf{x}_n) - m] \right\} \sqrt{\frac{q_m}{p_m(\mathbf{y}_0)}}$$

Fully expanded linearized objective

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{1}{2} \sum_{m} \left\{ C_h \sum_{n} k\left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right) \delta[b(\boldsymbol{x}_n) - m] \right\} \sqrt{\frac{q_m}{p_m(\boldsymbol{y}_0)}}$$

Moving terms around...

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{C_h}{2} \sum_{n} w_n k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right)$$
Does not depend on unknown \boldsymbol{y} Weighted kernel density estimate
where $w_n = \sum_{m} \sqrt{\frac{q_m}{p_m(\boldsymbol{y}_0)}} \delta[b(\boldsymbol{x}_n) - m]$

Weight is bigger when $q_m > p_m(\boldsymbol{y}_0)$

OK, why are we doing all this math?

 $\max_{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$

$$\max_{oldsymbol{y}}
ho[oldsymbol{p}(oldsymbol{y}),oldsymbol{q}]$$

Fully expanded linearized objective

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{C_h}{2} \sum_{n} w_n k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right)$$

where
$$w_n = \sum_m \sqrt{\frac{q_m}{p_m(\boldsymbol{y}_0)}} \delta[b(\boldsymbol{x}_n) - m]$$

$$\max_{oldsymbol{y}}
ho[oldsymbol{p}(oldsymbol{y}),oldsymbol{q}]$$

Fully expanded linearized objective

$$\begin{split} \rho[\pmb{p}(\pmb{y}),\pmb{q}] &\approx \frac{1}{2} \sum_{m} \sqrt{p_m(\pmb{y}_0)q_m} + \frac{C_h}{2} \sum_{n} w_n k \left(\left\| \frac{\pmb{y} - \pmb{x}_n}{h} \right\|^2 \right) \\ &\text{doesn't depend on unknown } \pmb{y} \\ &\text{where} \quad w_n = \sum_{m} \sqrt{\frac{q_m}{p_m(\pmb{y}_0)}} \delta[b(\pmb{x}_n) - m] \end{split}$$

 $\max_{oldsymbol{y}}
ho[oldsymbol{p}(oldsymbol{y}),oldsymbol{q}]$

Fully expanded linearized objective

$$\rho[\mathbf{p}(\mathbf{y}), \mathbf{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\mathbf{y}_0)q_m} + \frac{C_h}{2} \sum_{n} w_n k \left(\left\| \frac{\mathbf{y} - \mathbf{x}_n}{h} \right\|^2 \right)$$

doesn't depend on unknown **y**
where $w_n = \sum_{m} \sqrt{\frac{q_m}{p_m(\mathbf{y}_0)}} \delta[b(\mathbf{x}_n) - m]$

what can we use to solve this weighted KDE?

Mean Shift Algorithm!

$$\frac{C_h}{2} \sum_n w_n k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right)$$

the new sample of mean of this KDE is

$$\boldsymbol{y}_{1} = \frac{\sum_{n} \boldsymbol{x}_{n} w_{n} g\left(\left\|\frac{\boldsymbol{y}_{0} - \boldsymbol{x}_{n}}{h}\right\|^{2}\right)}{\sum_{n} w_{n} g\left(\left\|\frac{\boldsymbol{y}_{0} - \boldsymbol{x}_{n}}{h}\right\|^{2}\right)} \quad \text{(this was derived earlier)}$$

Mean-Shift Object Tracking

For each frame:

- 1. Initialize location \boldsymbol{y}_0 Compute \boldsymbol{q} Compute $\boldsymbol{p}(\boldsymbol{y}_0)$
- 2. Derive weights w_n
- 3. Shift to new candidate location (mean shift) $oldsymbol{y}_1$
- 4. Compute $\boldsymbol{p}(\boldsymbol{y}_1)$
- 5. If $\| \boldsymbol{y}_0 \boldsymbol{y}_1 \| < \epsilon$ return Otherwise $\boldsymbol{y}_0 \leftarrow \boldsymbol{y}_1$ and go back to 2

Compute a descriptor for the target

Target q

Search for similar descriptor in neighborhood in next frame

Target Candidate $\max_{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$

Compute a descriptor for the new target

Search for similar descriptor in neighborhood in next frame

Target

Candidate $\max_{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$

