
16-385 Computer Vision, Spring 2019

Homework Assignment 3
3D Reconstruction

Due Date: Sun March 10, 2019 23:59

Instructions

1. Integrity and collaboration: Students are encouraged to work in groups but each
student must submit their own work. If you work as a group, include the names of
your collaborators in your write up. Code should NOT be shared or copied. Please
DO NOT use external code unless permitted. Plagiarism is strongly prohibited and
will lead to failure of this course.

2. Start early! Especially if you are not familiar with MATLAB.

3. Questions: If you have any question, please look at piazza first. Other students may
have encountered the same problem, and is solved already. If not, post your question
on the discussion board. TAs will respond as soon as possible.

4. Write-up: Items to be included in the writeup are mentioned in each question, and
summarized in the Writeup section. Please note that we DO NOT accept handwritten
scans for your write-up in this assignment. Please type your answers to theory questions
and discussions for experiments electronically.

5. Handout: The handout zip file contains 3 items. assgn4.pdf is the assignment
handout. data contains 2 temple image files from the Middlebury MVS Temple Data
set, as well as 3 mat files. matlab contains 4 scripts that you will make use of in this
homework.

6. Submission: Your submission for this assignment should be a zip file, <andrew-id>.zip,
composed of your write-up, your MATLAB implementations (including helper func-
tions), and your implementations, results for extra credit (optional).

Your final upload should have the files arranged in this layout:

<AndrewID>.zip

• <AndrewId>

– <AndrewId>.pdf

– matlab

∗ camera2.m (provided)

1



∗ displayEpipolarF.m (provided)

∗ eightpoint.m (Section 3.1.1)

∗ epipolarCorrespondence.m (Section 3.1.2)

∗ epipolarMatchGUI.m (provided)

∗ essentialMatrix.m (Section 3.1.3)

∗ p2t.m (provided)

∗ testDepth.m (provided)

∗ testRectify.m (provided)

∗ refineF.m (provided)

∗ rectify pair.m (Section 3.2.1)

∗ testTempleCoords.m (Section 3.1.5)

∗ triangulate.m (Section 3.1.4)

∗ warp stereo.m (provided)

∗ Any other helper functions you need

– ec (Optional)

∗ get disparity.m (Section 3.2.2)

∗ get depth.m (Section 3.2.3)

∗ estimate params.m (Section 3.3.2)

∗ estimate pose.m (Section 3.3.1)

∗ projectCAD.m (Section 3.3.3)

∗ testPose.m (provided)

∗ testKRt.m (provided)

2



1 Overview

One of the major areas of computer vision is 3D reconstruction. Given several 2D images
of an environment, can we recover the 3D structure of the environment, as well as the
position of the camera/robot? This has many uses in robotics and autonomous systems, as
understanding the 3D structure of the environment is crucial to navigation. You don’t want
your robot constantly bumping into walls, or running over human beings!

Figure 1: Example of a robot using SLAM, a 3D reconstruction and localization
algorithm

In this assignment there are two programming parts: sparse reconstruction and dense re-
construction. Sparse reconstructions generally contain a number of points, but still manage
to describe the objects in question. Dense reconstructions are detailed and fine grained. In
fields like 3D modelling and graphics, extremely accurate dense reconstructions are invalu-
able when generating 3D models of real world objects and scenes.

In Part 1, you will be writing a set of functions to generate a sparse point cloud for
some test images we have provided to you. The test images are 2 renderings of a temple
from two different angles. We have also provided you with a mat file containing good point
correspondences between the two images. You will first write a function that computes the
fundamental matrix between the two images. Then write a function that uses the epipolar
constraint to find more point matches between the two images. Finally, you will write a
function that will triangulate the 3D points for each pair of 2D point correspondences.

3



Figure 2: The two temple images we have provided to you

We have provided you with a few helpful mat files. someCorresps.mat contains good
point correspondences. You will use this to compute the Fundamental matrix. intrinsics.mat
contains the intrinsic camera matrices, which you will need to compute the full camera pro-
jection matrices. Finally templeCoords.mat contains some points on the first image that
should be easy to localize in the second image.

In Part 2, we utilize the extrinsic parameters computed by Part 1 to further achieve dense
3D reconstruction of this temple. You will need to compute the rectification parameters.
We have provided you with testRectify.m (and some helper functions) that will use your
rectification function to warp the stereo pair. You will then optionally use the warped pair
to compute a disparity map and finally a dense depth map.

In both cases, multiple images are required, because without two images with a large
portion overlapping the problem is mathematically underspecified. It is for this same reason
biologists suppose that humans, and other predatory animals such as eagles and dogs, have
two front facing eyes. Hunters need to be able to discern depth when chasing their prey.
On the other hand herbivores, such as deer and squirrels, have their eyes position on the
sides of their head, sacrificing most of their depth perception for a larger field of view. The
whole problem of 3D reconstruction is inspired by the fact that humans and many other
animals rely on dome degree of depth perception when navigating and interacting with their
environment. Giving autonomous systems this information is very useful.

2 Theory

2.1 Triangulation (5 points)

Structured light is a general way of retrieving 3D structure from a stationary camera. One
very interesting way to do this is by using a light source and a thin shadow (maybe cast by
a pencil). See http://www.vision.caltech.edu/bouguetj/ICCV98/ for an example.

4



Figure 3: Camera and light source triangle diagram

This scheme uses a stationary lamp, and a stationary camera. Then a thin wand is waved
above the object, and a shadow plane is cast. From the camera view, you know the angle to
a point on the object is β, and from the position of the wand, you know the angle at which
the shadow is cast from the light source is α. You also know how far the camera is from the
light source, so you know the baseline distance b.

Given this information, how can you recover the position of the point in the scene? In
other words, can you represent the coordinates (x, z) of the point P by only b, α, β?

2.2 Fundamental Matrix (15 points)

Suppose two cameras fixate on a point P (see Figure 4) in space such that their optical
axes intersect at that point. Show that if the image coordinates are normalized so that the
coordinate origin (0, 0) coincides with the principal point, the F33 element of the fundamental
matrix F is zero.

Figure 4: Figure for Question 2.2. C1 and C2 are the optical centers. The
principal axes intersect at point P .

5



3 Programming

3.1 Sparse Reconstruction

In this section, you will be writing a set of function to compute the sparse reconstruction from
two sample images of a temple. You will first estimate the Fundamental matrix, compute
point correspondences, then plot the results in 3D.

It may be helpful to read through Section 3.1.5 right now. In Section 3.1.5 we ask you
to write a testing script that will run your whole pipeline. It will be easier to start that now
and add to it as you complete each of the questions one after the other.

3.1.1 Implement the eight point algorithm: (10 points)

In this question, you’re going to use the eight point algorithm which is covered in class
to estimate the fundamental matrix. Please use the point correspondences provided in
someCorresp.mat.

Write a function with the following signature:
function F = eightpoint(pts1, pts2, M)

Where x1 and x2 are N × 2 matrices corresponding to the (x,y) coordinates of the N
points in the first and second image respectively. M is a scale parameter.

• Normalize points and un-normalize F: You should scale the data by dividing each
coordinate by M (the maximum of the image’s width and height). After computing
F, you will have to “unscale” the fundamental matrix.

• You must enforce the rank 2 constraint on F before unscaling. Recall that a valid
fundamental matrix F will have all epipolar lines intersect at a certain point, meaning
that there exists a non-trivial null space for F. In general, with real points, the eight-
point solution for F will not come with this condition. To enforce the rank 2 condition,
decompose F with SVD to get the three matrices U,Σ,V such that F = UΣVT . Then
force the matrix to be rank 2 by setting the smallest singular value in Σ to zero, giving
you a new Σ′. Now compute the proper fundamental matrix with F′ = UΣ′VT .

• You may find it helpful to refine the solution by using local minimization. This probably
won’t fix a completely broken solution, but may make a good solution better by locally
minimizing a geometric cost function. For this we have provided refineF.m (takes in
Fundamental matrix and the two sets of points), which you can call from eightpoint

before unscaling F. This function uses matlab’s fminsearch to non-linearly search for
a better F that minimizes the cost function. For this to work, it needs an initial guess
for F that is already close to the minimum.

• Remember that the x-coordinate of a point in the image is its column entry and y-
coordinate is the row entry. Also note that eight-point is just a figurative name, it just
means that you need at least 8 points; your algorithm should use an over-determined
system (N > 8 points).

6



• To test your estimated F, use the provided function displayEpipolarF.m (takes in
F and the two images). This GUI lets you select a point in one of the images and
visualize the corresponding epipolar line in the other image like in Figure 5

In your write-up: Please include your recovered F and the visualization of some epipo-
lar lines (similar to Figure 5).

Figure 5: Epipolar lines visualization from displayEpipolarF.m

3.1.2 Find epipolar correspondences: (20 points)

To reconstruct a 3D scene with a pair of stereo images, we need to find many point pairs.
A point pair is two points in each image that correspond to the same 3D scene point. With
enough of these pairs, when we plot the resulting 3D points, we will have a rough outline
of the 3D object. You found point pairs in the previous homework using feature detectors
and feature descriptors, and testing a point in one image with every single point in the other
image. But here we can use the fundamental matrix to greatly simplify this search.

Figure 6: Epipolar Geometry (source Wikipedia)

7



Recall from class that given a point x in one image (the left view in Figure 6). Its
corresponding 3D scene point p could lie anywhere along the line from the camera center o
to the point x. This line, along with a second image’s camera center o′ (the right view in
Figure 6) forms a plane. This plane intersects with the image plane of the second camera,
resulting in a line l′ in the second image which describes all the possible locations that x
may be found in the second image. Line l′ is the epipolar line, and we only need to search
along this line to find a match for point x found in the first image.

Write a function with the following signature:
function pts2 = epipolarCorrespondence(im1, im2, F, pts1)

Where im1 and im2 are the two images in the stereo pair. F is the fundamental matrix
computed for the two images using your eightpoint function. pts1 is an N × 2 matrix
containing the (x,y) points in the first image. Your function should return pts2, an N × 2
matrix, which contains the corresponding points in the second image.

• To match one point x in image 1, use fundamental matrix to estimate the corresponding
epipolar line l′ and generate a set of candidate points in the second image.

• For each candidate points x′, a similarity score between x and x′ is computed. The
point among candidates with highest score is treated as epipolar correspondence.

• There are many ways to define the similarity between two points. Feel free to use
whatever you want and describe it in your write-up. One possible solution is to
select a small window of size w around the point x. Then compare this target window
to the window of the candidate point in the second image. For the images we gave you,
simple Euclidean distance or Manhattan distance should suffice. Manhattan distance
was not covered in class. Consider Googling it.

• Remember to take care of data type and index range.

You can use epipolarMatchGui.m to visually test your function. Your function does not
need to be perfect, but it should get most easy points correct, like corners, dots etc...

In your write-up: Include a screen shot of epipolarMatchGui running with your
implementation of epipolarCorrespondence. Mention the similarity metric you decided to
use. Also comment on any cases where your matching algorithm consistently fails, and why
you might think this is.

3.1.3 Write a function to compute the essential matrix: (10 points)

In order to get the full camera projection matrices we need to compute the Essential matrix.
So far, we have only been using the Fundamental matrix.

Write a function with the following signature:
function E = essentialMatrix(F, K1, K2)

Where F is the Fundamental matrix computed between two images, K1 and K2 are
the intrinsic camera matrices for the first and second image respectively (contained in

8



intrinsics.mat). E is the computed essential matrix. The intrinsic camera parameters
are typically acquired through camera calibration.

Refer to the class slides for the relationship between the Fundamental matrix and the
Essential matrix.

In your write-up: Write your estimated E matrix for the temple image pair we gave
you.

Figure 7: Epipolar Match visualization. A few errors are alright, but it should
get most easy points correct (corners, dots, etc...)

3.1.4 Implement triangulation: (20 points)

Write a function to triangulate pairs of 2D points in the images to a set of 3D points with
the signature:

function pts3d = triangulate(P1, pts1, P2, pts2)

Where pts1 and pts2 are the N × 2 matrices with the 2D image coordinates and pts3d

is an N×3 matrix with the corresponding 3D points (in all cases, one point per row). P1 and
P2 are the 3× 4 camera projection matrices. Remember that you will need to multiply the
given intrinsic matrices with your solution for the extrinsic camera matrices to obtain the
final camera projection matrices. For P1 you can assume no rotation or translation, so the
extrinsic matrix is just [I|0]. For P2, pass the essential matrix to the provided camera2.m

function to get four possible extrinsic matrices. You will need to determine which of these
is the correct one to use (see hint in Section 3.1.5).

Refer to the class slides for one possible triangulation algorithm. Once you have it
implemented, check the performance by looking at the re-projection error. To compute the
re-projection error, project the estimated 3D points back to the image 1(2) and compute the

9



mean Euclidean error between projected 2D points and pts1(2).
In your write-up: Describe how you detemined which extrinsic matrices is correct.

Note that simply rewording the hint is not enough. Report your re-projection error using
pts1, pts2 from someCorresp.mat. If implemented correctly, the re-projection error should
be less than 1 pixel.

3.1.5 Write a test script that uses templeCoords: (10 points)

You now have all the pieces you need to generate a full 3D reconstruction. Write a test script
testTempleCoords.m that does the following:

1. Load the two images and the point correspondences from someCorresp.mat

2. Run eightpoint to compute the fundamental matrix F

3. Load the points in image 1 contained in templeCoords.mat and run your
epipolarCorrespondences on them to get the corresponding points in image 2

4. Load intrinsics.mat and compute the essential matrix E.

5. Compute the first camera projection matrix P1 and use camera2.m to compute the
four candidates for P2

6. Run your triangulate function using the four sets of camera matrix candidates, the
points from templeCoords.mat and their computed correspondences.

7. Figure out the correct P2 and the corresponding 3D points.

Hint: You’ll get 4 projection matrix candidates for camera2 from the essential matrix.
The correct configuration is the one for which most of the 3D points are in front of
both cameras (positive depth).

8. Use matlab’s plot3 function to plot these point correspondences on screen

9. Save your computed rotation matrix (R1, R2) and translation (t1, t2) to the file
../data/extrinsics.mat. These extrinsic parameters will be used in the next section.

We will use your test script to run your code, so be sure it runs smoothly. In particular,
use relative paths to load files, not absolute paths.

In your write-up: Include 3 images of your final reconstruction of the templeCoords
points, from different angles.

10



6

5.5

5

4.5

4

3.5

3

0-0.4

0.5

0

-0.5

6

5.5

5

4.5

4

0.2
0 0.5

3.5

-0.2
-0.4 0-0.6

3

-0.5

Figure 8: Sample Reconstructions

3.2 Dense Reconstruction

In applications such as 3D modelling, 3D printing, and AR/VR, a sparse model is not enough.
When users are viewing the reconstruction, it is much more pleasing to deal with a dense
reconstruction. To do this, it is helpful to rectify the images to make matching easier.

In this section, you will be writing a set of functions to perform a dense reconstruction
on our temple examples. Given the provided intrinsic and computed extrinsic parameters,
you will need to write a function to compute the rectification parameters of the two images.
The rectified images are such that the epipolar lines are horizontal, so searching for corre-
spondences becomes a simple linear. This will be done for every point. Finally, you can
optionally compute the disparity and depth map.

3.2.1 Image Rectification (10 points)

Write a program that computes rectification matrices.
function [M1,M2,K1n,K2n,R1n,R2n,t1n,t2n] = rectify pair (K1,K2,R1,R2,t1,t2)

This function takes left and right camera parameters (K,R,t) and returns left and right
rectification matrices (M1,M2) and updated camera parameters. You can test your function
using the provided script testRectify.m.

From what we learned in class, the rectify pair function should consecutively run the
following steps:

1. Compute the optical center c1 and c2 of each camera by c = −(KR)−1(Kt).

2. Compute the new rotation matrix R̃ =
[
r1 r2 r3

]T
where r1, r2, r3 ∈ R3×1 are or-

thonormal vectors that represent x-, y-, and z-axes of the camera reference frame,
respectively.

11



(a) The new x-axis (r1) is parallel to the baseline: r1 = (c1 − c2)/‖c1 − c2‖.
(b) The new y-axis (r2) is orthogonal to x and to any arbitrary unit vector, which

we set to be the z unit vector of the old left matrix: r2 is the cross product of
R1(3, :)

T and r1.

(c) The new z-axis (r3) is orthogonal to x and y: r3 is the cross product of r2 and r1.

3. Compute the new intrinsic parameter K̃. We can use an arbitrary one. In our test
code, we just let K̃ = K2.

4. Compute the new translation: t1 = −R̃c1, t2 = −R̃c2.

5. Finally, the rectification matrix of the first camera can be obtained by

M1 = (K̃1R̃1)(K1R1)
−1 (1)

M2 can be computed from the same formula.

Once you finished, run testRectify.m (Be sure to have the extrinsics saved by your
testTempleCoords.m). This script will test your rectification code on the temple images
using the provided intrinsic parameters and your computed extrinsic paramters. It will
also save the estimated rectification matrix and updated camera parameters in temple.mat,
which will be used by the next test script testDepth.m.

In your write-up: Include a screen shot of the result of running testRectify.m on
temple images. The results should show some epipolar lines that are perfectly horizontal,
with corresponding points in both images lying on the same line.

3.2.2 Dense window matching to find per pixel disparity (extra credit) (20
points)

Write a program that creates a disparity map from a pair of rectified images (im1 and im2).
function dispM = get disparity(im1,im2,maxDisp,windowSize)

where maxDisp is the maximum disparity and windowSize is the window size. The output
dispM has the same dimension as im1 and im2. Since im1 and im2 are rectified, computing
correspondences is reduced to a 1-D search problem.

The dispM(y, x) is

dispM(y, x) = argmin
0≤d≤maxDisp

dist(im1(y, x), im2(y, x− d)), (2)

where dist(im1(y, x), im2(y, x−d)) =
∑w

i=−w
∑w

j=−w(im1(y+ i, x+j)−im2(y+ i, x+j−d))2

with w is (windowSize−1)/2. This summation on the window can be easily computed by us-
ing the conv2 Matlab function (i.e. convolve with a mask of ones(windowSize,windowSize))
Note that this is not the only way to implement this.

12



3.2.3 Depth map (extra credit) (10 points)

Write a function that creates a depth map from a disparity map (dispM).
function depthM = get depth(dispM,K1,K2,R1,R2,t1,t2)

Use the fact that depthM(y, x) = b × f/dispM(y, x) where b is the baseline and f is the
focal length of camera. For simplicity, assume that b = ‖c1 − c2‖ (i.e., distance between
optical centers) and f = K1(1, 1). Finally, let depthM(y, x) = 0 whenever dispM(y, x) = 0 to
avoid dividing by 0.

You can now test your disparity and depth map functions using testDepth.m. Be sure
to have the rectification saved (by running testRectify.m). This function will rectify the
images, then compute the disparity map and the depth map.

In your write-up: Include images of your disparity map and your depth map.

3.3 Pose Estimation (Extra Credit)

In this section, you will implement what you have learned on class to estimate both the
intrinsic and extrinsic parameters of camera given 2D points x on image and their corre-
sponding 3D points X. In other words, given a set of matched points {Xi,xi} and camera
model [

x
1

]
= f(X; p) = P

[
X
1

]
, (3)

we want to find the estimate of the camera matrix P ∈ R3×4, as well as intrinsic parameter
matrix K ∈ R3×3, camera rotation R ∈ R3×3 and camera translation t ∈ R3, such that

P = K
[
R t

]
. (4)

3.3.1 Estimate camera matrix P (10 points)

Write a function that estimates the camera matrix P given 2D and 3D points x,X.
function P = estimate pose(x, X),

where x is 2 × N matrix denoting the (x, y) coordinates of the N points on the image
plane and X is 3×N matrix denoting the (x, y, z) coordinates of the corresponding points in
the 3D world. Recall that this camera matrix can be computed using the same strategy as
homography estimation by Direct Linear Transform (DLT). Once you finish this function,
you can run the provided script testPose.m to test your implementation.

In your write-up: Include the output of the script testPose.

3.3.2 Estimate intrinsic/extrinsic parameters (20 points)

Write a function that estimates both intrinsic and extrinsic parameters from camera matrix.
function [K, R, t] = estimate params(P)

From what we learned on class, the estimate params should consecutively run the fol-
lowing steps:

13



1. Compute the camera center c by using SVD. Hint: c is the eigenvector corresponding
to the smallest eigenvalue.

2. Compute the intrinsic K and rotation R by using QR decomposition. K is a right
upper triangle matrix while R is a orthonormal matrix. Checking this answer1 might
help.

3. Compute the translation by t = −Rc.

Once you finish your implementation, you can run the provided script testKRt.m.
In your write-up: Include the output of the script testKRt.

3.3.3 Project a CAD model to the image (20 points)

Now you will utilize what you have implemented to estimate the camera matrix from a
real image,shown in Figure 9(left), and project the 3D object (CAD model), shown in Fig-
ure 9(right), back on to the image plane.

Figure 9: The provided image and 3D CAD model

Write a script projectCAD.m does the following:

1. Load an image image, a CAD model cad, 2D points x and 3D points X from PnP.mat.

2. Run estimate pose and estimate params to estimate camera matrix P, intrinsic ma-
trix K, rotation matrix R, and translation t.

3. Use your estimated camera matrix P to project the given 3D points X onto the image.

4. Plot the given 2D points x and the projected 3D points on screen. An example is
shown in Figure 10(left). Hint: use plot.

1http://math.stackexchange.com/questions/1640695/rq-decomposition

14



5. Draw the CAD model rotated by your estimated rotation R on screen. An example is
shown in Figure 10(middle). Hint: use trimesh.

6. Project the CAD’s all vertices onto the image and draw the projected CAD model
overlapping with the 2D image. An example is shown in Figure 10(right). Hint: use
patch.

Figure 10: Project a CAD model back onto the image. Left: the image
annotated with given 2D points (blue circle) and projected 3D points (red
points); Middle: the CAD model rotated by estimated R; Right: the image

overlapping with projected CAD model.

In your write-up: Include the three images similar to Figure 10. You have to use
different colors from the Figure 10. For example, green circle for given 2D points, black
points for projected 3D points, blue CAD model, and red projected CAD model overlapping
on the image. You will get NO credit if you use the same color.

15


