Two-view geometry

http://www.cs.cmu.edu/~16385/
16-385 Computer Vision Spring 2019, Lecture 10

Course announcements

- Homework 2 is due on Wednesday.
- How many of you have looked at/started/finished homework 2?
- Homework 3 will be released on Wednesday and will be due Friday, March $8^{\text {th }}$.
- Do you prefer Sunday, March $10^{\text {th }}$?
- Yannis has extra office hours on Tuesday 3-5pm.
- The Hartley-Zisserman book is available online for free from CMU's library.

Overview of today’s lecture

- Leftover from previous lecture: Other types of cameras, calibration.
- Triangulation.
- Epipolar geometry.
- Essential matrix.
- Fundamental matrix.
- 8-point algorithm.

Slide credits

Most of these slides were adapted from:

- Kris Kitani (16-385, Spring 2017).

Triangulation

Structure
 (scene geometry)
 Motion
 (camera geometry)
 Measurements

3D to 2D correspondences

2D to 2D coorespondences
estimate

2D to 2D coorespondences

Triangulation

Triangulation

Which 3D points map
to x ?

Triangulation

Triangulation

Create two points on the ray:

1) find the camera center; and
2) apply the pseudo-inverse of P on x. Then connect the two points.

Triangulation

Triangulation

Triangulation

Triangulation

Given a set of (noisy) matched points

$$
\left\{\boldsymbol{x}_{i}, \boldsymbol{x}_{i}^{\prime}\right\}
$$

and camera matrices

$$
\mathbf{P}, \mathbf{P}^{\prime}
$$

Estimate the 3D point
X

$\mathbf{x}=\mathbf{P} \boldsymbol{X}$

(homogeneous
coordinate)
Also, this is a similarity relation because it involves homogeneous coordinates

$\mathbf{x}=\alpha \mathbf{P} \boldsymbol{X}$
 coordinate)

Same ray direction but differs by a scale factor

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\alpha\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

How do we solve for unknowns in a similarity relation?

$\mathbf{x}=\mathbf{P} \boldsymbol{X}$

(homogeneous
coordinate)
Also, this is a similarity relation because it involves homogeneous coordinates

$\mathbf{x}=\alpha \mathbf{P} \boldsymbol{X}$
 (homogeneous
 coordinate)

Same ray direction but differs by a scale factor

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\alpha\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

How do we solve for unknowns in a similarity relation?

Remove scale factor, convert to linear system and solve with \square

$\mathbf{x}=\mathbf{P} \boldsymbol{X}$

(homogeneous
coordinate)
Also, this is a similarity relation because it involves homogeneous coordinates

$\mathbf{x}=\alpha \mathbf{P} \boldsymbol{X}$
 (homogeneous
 coordinate)

Same ray direction but differs by a scale factor

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\alpha\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

How do we solve for unknowns in a similarity relation?

Remove scale factor, convert to linear system and solve with SVD!

Recall: Cross Product

Vector (cross) product
takes two vectors and returns a vector perpendicular to both
$\boldsymbol{c}=\boldsymbol{a} \times \boldsymbol{b}$

$$
\boldsymbol{a} \times \boldsymbol{b}=\left[\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]
$$

cross product of two vectors in the same direction is zero

$$
\boldsymbol{a} \times \boldsymbol{a}=0
$$

remember this!!!
$\boldsymbol{c} \cdot \boldsymbol{a}=0$
$\boldsymbol{c} \cdot \boldsymbol{b}=0$

$\mathbf{x}=\alpha \mathbf{P} \boldsymbol{X}$

Same direction but differs by a scale factor

$$
\mathbf{x} \times \mathbf{P} \boldsymbol{X}=\mathbf{0}
$$

Cross product of two vectors of same direction is zero
(this equality removes the scale factor)

$$
\begin{gathered}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\alpha\left[\begin{array}{llll}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]} \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\alpha\left[\begin{array}{ll}
-\boldsymbol{p}_{1}^{\top}- \\
-\boldsymbol{p}_{2}^{\top}- \\
-\boldsymbol{p}_{3}^{\top}-
\end{array}\right]\left[\begin{array}{c}
\mid \\
\boldsymbol{X} \\
\mid
\end{array}\right]} \\
{\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\alpha\left[\begin{array}{l}
\boldsymbol{p}_{\boldsymbol{\top}}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{2}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{3}^{\top} \boldsymbol{X}
\end{array}\right]}
\end{gathered}
$$

$$
\begin{gathered}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\alpha\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]} \\
{\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\alpha\left[\begin{array}{ll}
-\boldsymbol{p}_{1}^{\top}- \\
- & \boldsymbol{p}_{2}^{\top}- \\
\boldsymbol{p}_{3}^{\top}-
\end{array}\right]\left[\begin{array}{c}
\mid \\
\boldsymbol{X} \\
\mid
\end{array}\right]} \\
{\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\alpha\left[\begin{array}{c}
\boldsymbol{p}_{1}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{2}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{3}^{\top} \boldsymbol{X}
\end{array}\right]} \\
{\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] \times\left[\begin{array}{c}
\boldsymbol{p}_{1}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{2}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{3}^{\top} \boldsymbol{X}
\end{array}\right]=\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top} \boldsymbol{X}-\boldsymbol{p}_{2}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{1}^{\top} \boldsymbol{X}-x \boldsymbol{p}_{3}^{\top} \boldsymbol{X} \\
x \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-y \boldsymbol{p}_{1}^{\top} \boldsymbol{X}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Using the fact that the cross product should be zero

$\mathbf{x} \times \mathbf{P} \boldsymbol{X}=\mathbf{0}$

$$
\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] \times\left[\begin{array}{c}
\boldsymbol{p}_{1}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{2}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{3}^{\top} \boldsymbol{X}
\end{array}\right]=\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top} \boldsymbol{X}-\boldsymbol{p}_{2}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{1}^{\top} \boldsymbol{X}-x \boldsymbol{p}_{3}^{\top} \boldsymbol{X} \\
x \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-y \boldsymbol{p}_{1}^{\top} \boldsymbol{X}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

Using the fact that the cross product should be zero

$\mathbf{x} \times \mathbf{P} \boldsymbol{X}=\mathbf{0}$

$$
\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] \times\left[\begin{array}{c}
\boldsymbol{p}_{1}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{2}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{3}^{\top} \boldsymbol{X}
\end{array}\right]=\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top} \boldsymbol{X}-\boldsymbol{p}_{2}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{1}^{\top} \boldsymbol{X}-x \boldsymbol{p}_{3}^{\top} \boldsymbol{X} \\
x \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-y \boldsymbol{p}_{1}^{\top} \boldsymbol{X}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

$$
\begin{gathered}
{\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top} \boldsymbol{X}-\boldsymbol{p}_{2}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{1}^{\top} \boldsymbol{X}-x \boldsymbol{p}_{3}^{\top} \boldsymbol{X}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
{\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top}-\boldsymbol{p}_{2}^{\top} \\
\boldsymbol{p}_{1}^{\top}-x \boldsymbol{p}_{3}^{\top}
\end{array}\right] \boldsymbol{X}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
\mathbf{A}_{i} \boldsymbol{X}=\mathbf{0}
\end{gathered}
$$

Now we can make a system of linear equations (two lines for each 2D point correspondence)

Concatenate the 2D points from both images

$$
\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top}-\boldsymbol{p}_{2}^{\top} \\
\boldsymbol{p}_{1}^{\top}-x \boldsymbol{p}_{3}^{\top} \\
y^{\prime} \boldsymbol{p}_{3}^{\prime \top}-\boldsymbol{p}_{2}^{\prime \top} \\
\boldsymbol{p}_{1}^{\prime \top}-x^{\prime} \boldsymbol{p}_{3}^{\prime \top}
\end{array}\right] \boldsymbol{X}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$\mathbf{A} \boldsymbol{X}=\mathbf{0}$
How do we solve homogeneous linear system?

Concatenate the 2D points from both images

$$
\begin{gathered}
{\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top}-\boldsymbol{p}_{2}^{\top} \\
\boldsymbol{p}_{1}^{\top}-x \boldsymbol{p}_{3}^{\top} \\
y^{\prime} \boldsymbol{p}_{3}^{\prime \top}-\boldsymbol{p}_{2}^{\prime \top} \\
\boldsymbol{p}_{1}^{\prime \top}-x^{\prime} \boldsymbol{p}_{3}^{\prime \top}
\end{array}\right] \boldsymbol{X}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
\mathbf{A} \boldsymbol{X}=\mathbf{0}
\end{gathered}
$$

How do we solve homogeneous linear system?

$$
S \vee D!
$$

Recall: Total least squares

(Warning: change of notation. x is a vector of parameters!)

$$
\begin{aligned}
E_{\mathrm{TLS}} & =\sum_{i}\left(\boldsymbol{a}_{i} \boldsymbol{x}\right)^{2} \\
& =\|\mathbf{A} \boldsymbol{x}\|^{2} \quad \text { (matrix form) } \\
& \|\boldsymbol{x}\|^{2}=1 \quad \text { constraint }
\end{aligned}
$$

Solution is the eigenvector corresponding to smallest eigenvalue of
$\mathbf{A}^{\top} \mathbf{A}$

Structure
 (scene geometry)
 Motion
 (camera geometry)
 Measurements

3D to 2D correspondences

2D to 2D coorespondences
estimate

2D to 2D coorespondences

Epipolar geometry

Epipolar geometry

Image plane

Epipolar geometry

Epipolar geometry

Epipolar geometry

Epipolar geometry

Quiz

Epipolar constraint

Potential matches for \boldsymbol{x} lie on the epipolar line \boldsymbol{l}^{\prime}

Epipolar constraint

Potential matches for \boldsymbol{x} lie on the epipolar line \boldsymbol{l}^{\prime}

The point \mathbf{x} (left image) maps to a \qquad in the right image

The baseline connects the \qquad and \qquad
An epipolar line (left image) maps to a \qquad in the right image

An epipole \mathbf{e} is a projection of the \qquad on the image plane

All epipolar lines in an image intersect at the

Converging cameras

Where is the epipole in this image?

Converging cameras

Where is the epipole in this image?
It's not always in the image

Parallel cameras

Where is the epipole?

Parallel cameras

epipole at infinity

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

Right image

How would you do it?

Recall:Epipolar constraint

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

Right image

Want to avoid search over entire image
Epipolar constraint reduces search to a single line

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

Right image

Want to avoid search over entire image
Epipolar constraint reduces search to a single line How do you compute the epipolar line?

The essential matrix

Recall:Epipolar constraint

Given a point in one image, multiplying by the essential matrix will tell us the epipolar line in the second view.

Motivation

The Essential Matrix is a 3×3 matrix that encodes epipolar geometry

Given a point in one image, multiplying by the essential matrix will tell us the epipolar line in the second view.

Recall: Dot Product

$$
\boldsymbol{c} \cdot \boldsymbol{a}=0 \quad \boldsymbol{c} \cdot \boldsymbol{b}=0
$$

Recall: Cross Product

Vector (cross) product
takes two vectors and returns a vector perpendicular to both

$$
c=a \times b
$$

$$
c \cdot a=0
$$

$\boldsymbol{c} \cdot \boldsymbol{b}=0$

Cross product

$$
\boldsymbol{a} \times \boldsymbol{b}=\left[\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]
$$

Can also be written as a matrix multiplication

$$
\boldsymbol{a} \times \boldsymbol{b}=[\boldsymbol{a}]_{\times} \boldsymbol{b}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Representing the ...

Epipolar Line

$$
a x+b y+c=0
$$

$$
\boldsymbol{l}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

If the point \boldsymbol{x} is on the epipolar line \boldsymbol{l} then

$$
\boldsymbol{x}^{\top} \boldsymbol{l}=?
$$

Epipolar Line

$$
a x+b y+c=0
$$

$$
\boldsymbol{l}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

If the point \boldsymbol{X} is on the epipolar line \boldsymbol{l} then

$$
\boldsymbol{x}^{\top} \boldsymbol{l}=0
$$

vector representing the line is normal (orthogonal) to the plane

vector representing the point x is inside the plane

Therefore:
$\boldsymbol{x}^{\top} \boldsymbol{l}=0$

So if $\boldsymbol{x}^{\top} \boldsymbol{l}=0$ and $\quad \mathbf{E} \boldsymbol{x}=\boldsymbol{l}_{\text {then }}^{\prime}$

$$
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=?
$$

So if $\boldsymbol{x}^{\top} \boldsymbol{l}=0$ and $\quad \mathbf{E} \boldsymbol{x}=\boldsymbol{l}_{\text {then }}^{\prime}$

$$
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0
$$

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

They are both 3×3 matrices but ...

$\boldsymbol{l}^{\prime}=\mathbf{E} \boldsymbol{x}$

Essential matrix maps a point to a line

$$
\boldsymbol{x}^{\prime}=\mathbf{H} \boldsymbol{x}
$$

Homography maps a point to a point

Where does the Essential matrix come from?

$$
\boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t})
$$

$$
\boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t})
$$

Does this look familiar?

$$
\boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t})
$$

Camera-camera transform just like world-camera transform

These three vectors are coplanar $\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{x}^{\prime}$

If these three vectors are coplanar $\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{x}^{\prime}$ then

$$
\boldsymbol{x}^{\top}(\boldsymbol{t} \times \boldsymbol{x})=\text { ? }
$$

If these three vectors are coplanar $\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{x}^{\prime}$ then

$$
\boldsymbol{x}^{\top}(\boldsymbol{t} \times \boldsymbol{x})=0
$$

If these three vectors are coplanar $\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{x}^{\prime}$ then

$$
(\boldsymbol{x}-\boldsymbol{t})^{\top}(\boldsymbol{t} \times \boldsymbol{x})=?
$$

If these three vectors are coplanar $\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{x}^{\prime}$ then

$$
(\boldsymbol{x}-\boldsymbol{t})^{\top}(\boldsymbol{t} \times \boldsymbol{x})=0
$$

putting it together

rigid motion
coplanarity

$$
\begin{gathered}
\boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t}) \quad(\boldsymbol{x}-\boldsymbol{t})^{\top}(\boldsymbol{t} \times \boldsymbol{x})=0 \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)(\boldsymbol{t} \times \boldsymbol{x})=0
\end{gathered}
$$

putting it together

rigid motion

$$
\begin{gathered}
\boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t}) \quad(\boldsymbol{x}-\boldsymbol{t})^{\top}(\boldsymbol{t} \times \boldsymbol{x})=0 \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)(\boldsymbol{t} \times \boldsymbol{x})=0 \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)\left(\left[\mathbf{t}_{\times}\right] \boldsymbol{x}\right)=0
\end{gathered}
$$

putting it together

rigid motion

$$
\begin{array}{r}
\boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t}) \quad(\boldsymbol{x}-\boldsymbol{t})^{\top} \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)(\boldsymbol{t} \times \boldsymbol{x})=0 \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)\left(\left[\mathbf{t}_{\times}\right] \boldsymbol{x}\right)=0 \\
\boldsymbol{x}^{\prime \top}\left(\mathbf{R}\left[\mathbf{t}_{\times}\right]\right) \boldsymbol{x}=0
\end{array}
$$

putting it together

rigid motion

$$
\begin{array}{r}
\boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t}) \quad(\boldsymbol{x}-\boldsymbol{t})^{\top} \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)(\boldsymbol{t} \times \boldsymbol{x})=0 \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)\left(\left[\mathbf{t}_{\times}\right] \boldsymbol{x}\right)=0 \\
\boldsymbol{x}^{\prime \top}\left(\mathbf{R}\left[\mathbf{t}_{\times}\right]\right) \boldsymbol{x}=0 \\
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0
\end{array}
$$

putting it together

rigid motion

$$
\boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t})
$$

$$
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)(\boldsymbol{t} \times \boldsymbol{x})=0
$$

$$
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)\left(\left[\mathbf{t}_{\times}\right] \boldsymbol{x}\right)=0
$$

$$
\boldsymbol{x}^{\prime \top}\left(\mathbf{R}\left[\mathbf{t}_{\times}\right]\right) \boldsymbol{x}=0
$$

$$
\boldsymbol{x}^{\prime \top} \mathbf{E} \mathscr{x}=0
$$

properties of the E matrix

Longuet-Higgins equation

$$
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0
$$

properties of the E matrix

Longuet-Higgins equation

$$
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0
$$

Epipolar lines

$$
\begin{array}{ll}
\boldsymbol{x}^{\top} \boldsymbol{l}=0 & \boldsymbol{x}^{\prime \top} \boldsymbol{l}^{\prime}=0 \\
\boldsymbol{l}^{\prime}=\mathbf{E} \boldsymbol{x} & \boldsymbol{l}=\mathbf{E}^{T} \boldsymbol{x}^{\prime}
\end{array}
$$

properties of the E matrix

Longuet-Higgins equation $\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0$
$\begin{array}{lll}\text { Epipolar lines } & \boldsymbol{x}^{\top} \boldsymbol{l}=0 & \boldsymbol{x}^{\prime \top} \boldsymbol{l}^{\prime}=0 \\ & \boldsymbol{l}^{\prime}=\mathbf{E} \boldsymbol{x} & \boldsymbol{l}=\mathbf{E}^{T} \boldsymbol{x}^{\prime}\end{array}$

Epipoles $\quad \boldsymbol{e}^{\prime \top} \mathbf{E}=\mathbf{0} \quad \mathbf{E} \boldsymbol{e}=\mathbf{0}$
(points in normalized camera coordinates)

Recall:Epipolar constraint

Given a point in one image, multiplying by the essential matrix will tell us the epipolar line in the second view.

points aligned to camera coordinate axis (calibrated camera)

How do you generalize to uncalibrated cameras?

The fundamental matrix

The

Fundamental matrix

is a
generalization
of the

Essential matrix,
where the assumption of calibrated cameras
is removed

$\hat{\boldsymbol{x}}^{\prime \top} \mathbf{E} \hat{\boldsymbol{x}}=0$

The Essential matrix operates on image points expressed in normalized coordinates
(points have been aligned (normalized) to camera coordinates)

$$
\begin{aligned}
& \hat{\boldsymbol{x}^{\prime}}=\mathbf{K}^{-1} \boldsymbol{x}^{\prime} \\
& \underset{\substack{\text { cacenar } \\
\text { pomi }}}{\hat{\boldsymbol{x}}}=\mathbf{K}_{\substack{\text { impae } \\
\text { poont }}}^{\boldsymbol{x}} \boldsymbol{x}
\end{aligned}
$$

$\hat{\boldsymbol{x}}^{\prime \top} \mathbf{E} \hat{\boldsymbol{x}}=0$

The Essential matrix operates on image points expressed in normalized coordinates
(points have been aligned (normalized) to camera coordinates)

$$
\hat{\boldsymbol{x}^{\prime}}=\mathbf{K}^{-1} \boldsymbol{x}^{\prime} \quad \hat{\substack{\text { camera } \\ \text { point }}} \mid \hat{\mathbf{K}^{-1} \boldsymbol{x}} \underset{\substack{\text { imaee } \\ \text { point }}}{ }
$$

Writing out the epipolar constraint in terms of image coordinates

$$
\begin{gathered}
\boldsymbol{x}^{\prime \top} \mathbf{K}^{\prime-\top} \mathbf{E K}^{-1} \boldsymbol{x}=0 \\
\boldsymbol{x}^{\prime \top}\left(\mathbf{K}^{\prime-\top} \mathbf{E K}^{-1}\right) \boldsymbol{x}=0 \\
\boldsymbol{x}^{\prime \top} \mathbf{F} \boldsymbol{x}=0
\end{gathered}
$$

Same equation works in image coordinates!

$$
\boldsymbol{x}^{\prime \top} \mathbf{F} \boldsymbol{x}=0
$$

it maps pixels to epipolar lines

properties of the F-matrix

Longuet-Higgins equation $\left.\boldsymbol{x}^{\prime \top}\right] \underline{y}=0$

Epipolar lines

$$
\begin{array}{lll}
\text { Epipolar lines } & \boldsymbol{x}^{\top} \boldsymbol{l}=0 & \boldsymbol{x}^{\prime \top} \boldsymbol{l}^{\prime}=0 \\
& \boldsymbol{l}^{\prime}=\boldsymbol{D} \boldsymbol{x} & \boldsymbol{l}=\mathrm{D}^{T} \boldsymbol{x}^{\prime}
\end{array}
$$

Epipoles

$$
\begin{aligned}
& \left.e^{\prime \top}\right\rceil=0 \\
& \text { in image coordinates) }
\end{aligned}
$$

Breaking down the fundamental matrix

$$
\begin{aligned}
\mathbf{F} & =\mathbf{K}^{\prime-\top} \mathbf{E K}^{-1} \\
\mathbf{F} & =\mathbf{K}^{\prime-\top}\left[\mathbf{t}_{\times}\right] \mathbf{R K}^{-1}
\end{aligned}
$$

Depends on both intrinsic and extrinsic parameters

Breaking down the fundamental matrix

$$
\begin{aligned}
\mathbf{F} & =\mathbf{K}^{\prime-\top} \mathbf{E K}^{-1} \\
\mathbf{F} & =\mathbf{K}^{\prime-T}\left[\mathbf{t}_{\times}\right] \mathbf{R K}^{-1}
\end{aligned}
$$

Depends on both intrinsic and extrinsic parameters

How would you solve for F?

$$
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0
$$

The 8-point algorithm

Assume you have M matched image points

$$
\left\{\boldsymbol{x}_{m}, \boldsymbol{x}_{m}^{\prime}\right\} \quad m=1, \ldots, M
$$

Each correspondence should satisfy

$$
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0
$$

How would you solve for the 3×3 F matrix?

Assume you have M matched image points

$$
\left\{\boldsymbol{x}_{m}, \boldsymbol{x}_{m}^{\prime}\right\} \quad m=1, \ldots, M
$$

Each correspondence should satisfy

$$
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0
$$

How would you solve for the 3×3 F matrix?

$$
S \vee D
$$

Assume you have M matched image points

$$
\left\{\boldsymbol{x}_{m}, \boldsymbol{x}_{m}^{\prime}\right\} \quad m=1, \ldots, M
$$

Each correspondence should satisfy

$$
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0
$$

How would you solve for the 3×3 F matrix?
Set up a homogeneous linear system with 9 unknowns

$$
\begin{gathered}
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0 \\
{\left[\begin{array}{lll}
x_{m}^{\prime} & y_{m}^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{1} & f_{2} & f_{3} \\
f_{4} & f_{5} & f_{6} \\
f_{7} & f_{8} & f_{9}
\end{array}\right]\left[\begin{array}{c}
x_{m} \\
y_{m} \\
1
\end{array}\right]=0}
\end{gathered}
$$

How many equation do you get from one correspondence?

$$
\left[\begin{array}{lll}
x_{m}^{\prime} & y_{m}^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{1} & f_{2} & f_{3} \\
f_{4} & f_{5} & f_{6} \\
f_{7} & f_{8} & f_{9}
\end{array}\right]\left[\begin{array}{c}
x_{m} \\
y_{m} \\
1
\end{array}\right]=0
$$

ONE correspondence gives you ONE equation

$$
x_{m} x_{m}^{\prime} f_{1}+x_{m} y_{m}^{\prime} f_{2}+x_{m} f_{3}+
$$

$$
y_{m} x_{m}^{\prime} f_{4}+y_{m} y_{m}^{\prime} f_{5}+y_{m} f_{6}+
$$

$$
x_{m}^{\prime} f_{7}+y_{m}^{\prime} f_{8}+f_{9}=0
$$

$$
\left[\begin{array}{lll}
x_{m}^{\prime} & y_{m}^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{1} & f_{2} & f_{3} \\
f_{4} & f_{5} & f_{6} \\
f_{7} & f_{8} & f_{9}
\end{array}\right]\left[\begin{array}{c}
x_{m} \\
y_{m} \\
1
\end{array}\right]=0
$$

Set up a homogeneous linear system with 9 unknowns

$$
\left[\begin{array}{ccccccccc}
x_{1} x_{1}^{\prime} & x_{1} y_{1}^{\prime} & x_{1} & y_{1} x_{1}^{\prime} & y_{1} y_{1}^{\prime} & y_{1} & x_{1}^{\prime} & y_{1}^{\prime} & 1 \\
\vdots & \vdots \\
x_{M} x_{M}^{\prime} & x_{M} y_{M}^{\prime} & x_{M} & y_{M} x_{M}^{\prime} & y_{M} y_{M}^{\prime} & y_{M} & x_{M}^{\prime} & y_{M}^{\prime} & 1
\end{array}\right]\left[\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{5} \\
f_{6} \\
f_{7} \\
f_{8} \\
f_{9}
\end{array}\right]=\mathbf{0}
$$

How many equations do you need?

Each point pair (according to epipolar constraint) contributes only one scalar equation

$$
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0
$$

Note: This is different from the Homography estimation where each point pair contributes 2 equations.

We need at least 8 points

Hence, the 8 point algorithm!

How do you solve a homogeneous linear system?

$$
\mathbf{A} \boldsymbol{X}=\mathbf{0}
$$

How do you solve a homogeneous linear system?

$$
\mathbf{A} \boldsymbol{X}=\mathbf{0}
$$

Total Least Squares

minimize $\|\mathbf{A} \boldsymbol{x}\|^{2}$
subject to $\quad\|\boldsymbol{x}\|^{2}=1$

How do you solve a homogeneous linear system?

$$
\mathbf{A} \boldsymbol{X}=\mathbf{0}
$$

Total Least Squares

minimize $\|\mathbf{A} \boldsymbol{x}\|^{2}$
subject to $\quad\|\boldsymbol{x}\|^{2}=1$
S V D!

Eight-Point Algorithm

0. (Normalize points)
1. Construct the $\mathrm{M} \times 9$ matrix \mathbf{A}
2. Find the SVD of \mathbf{A}
3. Entries of \mathbf{F} are the elements of column of \mathbf{V} corresponding to the least singular value
4. (Enforce rank 2 constraint on F)
5. (Un-normalize F)

Eight-Point Algorithm

0. (Normalize points)
1. Construct the $\mathrm{M} \times 9$ matrix \mathbf{A}
2. Find the SVD of \mathbf{A}
3. Entries of \mathbf{F} are the elements of column of \mathbf{V} corresponding to the least singular value
4. (Enforce rank 2 constraint on F)
5. (Un-normalize F)

See Hartley-Zisserman for why we do this

Eight-Point Algorithm

0. (Normalize points)
1. Construct the $\mathrm{M} \times 9$ matrix \mathbf{A}
2. Find the SVD of \mathbf{A}
3. Entries of \mathbf{F} are the elements of column of \mathbf{V} corresponding to the least singular value
4. (Enforce rank 2 constraint on F)
5. (Un-normalize F)

How do we do this?

Eight-Point Algorithm

0. (Normalize points)
1. Construct the $\mathrm{M} \times 9$ matrix \mathbf{A}
2. Find the SVD of \mathbf{A}
3. Entries of \mathbf{F} are the elements of column of \mathbf{V} corresponding to the least singular value
4. (Enforce rank 2 constraint on F)
5. (Un-normalize F)

How do we do this?
S V D!

Enforcing rank constraints

Problem: Given a matrix F, find the matrix F' of rank k that is closest to F,

$$
\min _{\substack{F^{\prime} \\ \operatorname{rank}\left(F^{\prime}\right)=k}}\left\|F-F^{\prime}\right\|^{2}
$$

Solution: Compute the singular value decomposition of F,

$$
F=U \Sigma V^{T}
$$

Form a matrix Σ^{\prime} by replacing all but the k largest singular values in Σ with 0 .
Then the problem solution is the matrix F^{\prime} formed as,

$$
F^{\prime}=U \Sigma^{\prime} V^{T}
$$

Eight-Point Algorithm

0. (Normalize points)
1. Construct the $\mathrm{M} \times 9$ matrix \mathbf{A}
2. Find the SVD of \mathbf{A}
3. Entries of \mathbf{F} are the elements of column of \mathbf{V} corresponding to the least singular value
4. (Enforce rank 2 constraint on F)
5. (Un-normalize F)

Example

epipolar lines

$$
\mathbf{F}=\left[\begin{array}{ccc}
-0.00310695 & -0.0025646 & 2.96584 \\
-0.028094 & -0.00771621 & 56.3813 \\
13.1905 & -29.2007 & -9999.79
\end{array}\right]
$$

$$
\begin{aligned}
\boldsymbol{x} & =\left[\begin{array}{c}
343.53 \\
221.70 \\
1.0
\end{array}\right] \\
\boldsymbol{l}^{\prime} & =\mathbf{F} \boldsymbol{x} \\
& =\left[\begin{array}{c}
0.0295 \\
0.9996 \\
-265.1531
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{l}^{\prime} & =\mathbf{F} \boldsymbol{x} \\
& =\left[\begin{array}{c}
0.0295 \\
0.9996 \\
-265.1531
\end{array}\right]
\end{aligned}
$$

Where is the epipole?

How would you compute it?

$$
\mathbf{F e}=\mathbf{0}
$$

The epipole is in the right null space of \mathbf{F}

How would you solve for the epipole?

(hint: this is a homogeneous linear system)

$$
\mathbf{F e}=\mathbf{0}
$$

The epipole is in the right null space of \mathbf{F}

How would you solve for the epipole?

(hint: this is a homogeneous linear system)
S V D!

$\gg[u, d]=\operatorname{eigs}\left(F^{\prime} * F\right)$
eigenvectors
u =

$$
\begin{array}{rrr}
-0.0013 & 0.2586 & -0.9660 \\
0.0029 & -0.9660 & -0.2586 \\
1.0000 & 0.0032 & -0.0005
\end{array}
$$

eigenvalue

$$
\begin{array}{rrr}
d=1.0 e 8^{\star} & \\
-1.0000 & 0 & 0 \\
0 & -0.0000 & 0 \\
0 & 0 & -0.0000
\end{array}
$$

$\gg[u, d]=\operatorname{eigs}\left(F^{\prime} * E\right)$
eigenvectors
u =

$$
\begin{array}{rr|r}
-0.0013 & 0.2586 & -0.9660 \\
0.0029 & -0.9660 & -0.2586 \\
1.0000 & 0.0032 & -0.0005
\end{array}
$$

eigenvalue

$$
\begin{array}{rrr}
d=1.0 e 8^{*} & \\
-1.0000 & 0 & 0 \\
0 & -0.0000 & 0 \\
0 & 0 & -0.0000
\end{array}
$$

$\gg[u, d]=\operatorname{eigs}\left(F^{\prime} * F\right)$
eigenvectors
u =

$$
\begin{array}{rr|r}
-0.0013 & 0.2586 & -0.9660 \\
0.0029 & -0.9660 & -0.2586 \\
1.0000 & 0.0032 & -0.0005
\end{array}
$$

eigenvalue

$$
\begin{array}{rrr}
d=1.0 e 8^{*} & \\
-1.0000 & 0 & 0 \\
0 & -0.0000 & 0 \\
0 & 0 & -0.0000
\end{array}
$$

Eigenvector associated with smallest eigenvalue

$$
\begin{aligned}
& \gg \text { uu }=u(:, 3) \\
& (-0.9660-0.2586-0.0005)
\end{aligned}
$$

$\gg[u, d]=\operatorname{eigs}\left(F^{\prime} * F\right)$
eigenvectors
u =

$$
\begin{array}{rr|r}
-0.0013 & 0.2586 & -0.9660 \\
0.0029 & -0.9660 & -0.2586 \\
1.0000 & 0.0032 & -0.0005
\end{array}
$$

eigenvalue
$d=1.0 e 8^{\star}$
-1.0000
0
-0.0000
0

Eigenvector associated with smallest eigenvalue
\gg uu / uu(3)
(1861.02
498.21
1.0)

References

Basic reading:

- Szeliski textbook, Sections 7.1, 7.2, 11.1.
- Hartley and Zisserman, Chapters 9, 11, 12.

