

http://www.cs.cmu.edu/~16385/

16-385 Computer Vision Spring 2019, Lecture 10

Course announcements

- Homework 2 is due on Wednesday.
 - How many of you have looked at/started/finished homework 2?
- Homework 3 will be released on Wednesday and will be due Friday, March 8th.
 Do you prefer Sunday, March 10th?
- Yannis has extra office hours on Tuesday 3-5pm.
- The Hartley-Zisserman book is available online for free from CMU's library.

Overview of today's lecture

- Leftover from previous lecture: Other types of cameras, calibration.
- Triangulation.
- Epipolar geometry.
- Essential matrix.
- Fundamental matrix.
- 8-point algorithm.

Slide credits

Most of these slides were adapted from:

• Kris Kitani (16-385, Spring 2017).

	Structure (scene geometry)	Motion (camera geometry)	Measurements
Pose Estimation	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D coorespondences
Reconstruction	estimate	estimate	2D to 2D coorespondences

Given a set of (noisy) matched points $\{m{x}_i,m{x}_i'\}$

and camera matrices \mathbf{P},\mathbf{P}'

Estimate the 3D point

\mathbf{X}

 $\mathbf{x} = \mathbf{P} \boldsymbol{X}$ (homogeneous coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

coordinate)

Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

 $\mathbf{x} = \mathbf{P} \boldsymbol{X}$ (homogeneous coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

coordinate)

Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

Remove scale factor, convert to linear system and solve with

 $\mathbf{x} = \mathbf{P} \boldsymbol{X}$ (homogeneous coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

coordinate)

Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

Remove scale factor, convert to linear system and solve with SVD!

Recall: Cross Product

Vector (cross) product

takes two vectors and returns a vector perpendicular to both

$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$

Same direction but differs by a scale factor

$\mathbf{x} \times \mathbf{P} \mathbf{X} = \mathbf{0}$

Cross product of two vectors of same direction is zero (this equality removes the scale factor)

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

 $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} \boldsymbol{p}_1^\top \boldsymbol{X} \\ \boldsymbol{p}_2^\top \boldsymbol{X} \\ \boldsymbol{p}_3^\top \boldsymbol{X} \end{bmatrix}$

 $\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \boldsymbol{p}_1^\top \boldsymbol{X} \\ \boldsymbol{p}_2^\top \boldsymbol{X} \\ \boldsymbol{p}_3^\top \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} y \boldsymbol{p}_3^\top \boldsymbol{X} - \boldsymbol{p}_2^\top \boldsymbol{X} \\ \boldsymbol{p}_1^\top \boldsymbol{X} - x \boldsymbol{p}_3^\top \boldsymbol{X} \\ x \boldsymbol{p}_2^\top \boldsymbol{X} - y \boldsymbol{p}_1^\top \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Using the fact that the cross product should be zero

$$\mathbf{x} \times \mathbf{P} \mathbf{X} = \mathbf{0}$$
$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \mathbf{p}_1^\top \mathbf{X} \\ \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_3^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} y \mathbf{p}_3^\top \mathbf{X} - \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_1^\top \mathbf{X} - x \mathbf{p}_3^\top \mathbf{X} \\ x \mathbf{p}_2^\top \mathbf{X} - y \mathbf{p}_1^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

One 2D to 3D point correspondence give you equations

Using the fact that the cross product should be zero

$$\mathbf{X} \times \mathbf{P} \mathbf{X} = \mathbf{0}$$
$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \mathbf{p}_1^\top \mathbf{X} \\ \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_3^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} y \mathbf{p}_3^\top \mathbf{X} - \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_1^\top \mathbf{X} - x \mathbf{p}_3^\top \mathbf{X} \\ x \mathbf{p}_2^\top \mathbf{X} - y \mathbf{p}_1^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

One 2D to 3D point correspondence give you 2 equations

 $\begin{bmatrix} y \boldsymbol{p}_3^\top \boldsymbol{X} - \boldsymbol{p}_2^\top \boldsymbol{X} \\ \boldsymbol{p}_1^\top \boldsymbol{X} - x \boldsymbol{p}_2^\top \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

 $\begin{vmatrix} y \boldsymbol{p}_3^{\top} - \boldsymbol{p}_2^{\top} \\ \boldsymbol{p}_1^{\top} - x \boldsymbol{p}_2^{\top} \end{vmatrix} \boldsymbol{X} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$

 $\mathbf{A}_i \boldsymbol{X} = \boldsymbol{0}$

Now we can make a system of linear equations (two lines for each 2D point correspondence)

Concatenate the 2D points from both images

sanity check! dimensions?

$\mathbf{A} \boldsymbol{X} = \boldsymbol{0}$

How do we solve homogeneous linear system?

Concatenate the 2D points from both images

$\mathbf{A} \boldsymbol{X} = \boldsymbol{0}$

How do we solve homogeneous linear system?

SVD!

Recall: Total least squares
(Warning: change of notation. x is a vector of parameters!)
$$E_{\mathrm{TLS}} = \sum_i (\boldsymbol{a}_i \boldsymbol{x})^2$$
$$= \|\mathbf{A}\boldsymbol{x}\|^2 \qquad \text{(matrix form)}$$
$$\|\boldsymbol{x}\|^2 = 1 \qquad \text{constraint}$$

Solution is the eigenvector corresponding to smallest eigenvalue of

 $\mathbf{A}^{\top}\mathbf{A}$

	Structure (scene geometry)	Motion (camera geometry)	Measurements
Pose Estimation	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D coorespondences
Reconstruction	estimate	estimate	2D to 2D coorespondences

Quiz

Quiz

Epipolar constraint

Potential matches for $\, oldsymbol{x} \,$ lie on the epipolar line $\, oldsymbol{l}' \,$

Epipolar constraint

Where is the epipole in this image?

Where is the epipole in this image?

It's not always in the image

Parallel cameras

Where is the epipole?

Parallel cameras

epipole at infinity

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

Right image

How would you do it?

Recall: Epipolar constraint

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

Right image

Want to avoid search over entire image Epipolar constraint reduces search to a single line The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

Right image

Want to avoid search over entire image Epipolar constraint reduces search to a single line

How do you compute the epipolar line?

The essential matrix

Recall: Epipolar constraint

Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.

Motivation

The Essential Matrix is a 3 x 3 matrix that encodes **epipolar geometry**

Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.

dot product of two orthogonal vectors is zero

Recall: Cross Product

Vector (cross) product

takes two vectors and returns a vector perpendicular to both

Cross product

$$m{a} imes m{b} = \left[egin{array}{c} a_2 b_3 - a_3 b_2 \ a_3 b_1 - a_1 b_3 \ a_1 b_2 - a_2 b_1 \end{array}
ight]$$

Can also be written as a matrix multiplication

$$m{a} imes m{b} = [m{a}]_{ imes} m{b} = egin{bmatrix} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{bmatrix} egin{bmatrix} b_1 \ b_2 \ b_3 \ b_3 \end{bmatrix}$$

Skew symmetric

Representing the ...

If the point $oldsymbol{x}$ is on the epipolar line $oldsymbol{l}$ then

Epipolar Line

ax+by+c=0 in vector form

If the point $oldsymbol{x}$ is on the epipolar line $oldsymbol{l}$ then

 $l = \left| \begin{array}{c} a \\ b \\ c \end{array} \right|$

 $\boldsymbol{x}^{\top}\boldsymbol{l}=0$

So if
$$x^{\top}l = 0$$
 and $Ex = l'$ then
 $x'^{\top}Ex = 0$

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

They are both 3 x 3 matrices but ...

Essential matrix maps a **point** to a **line**

 $x' = \mathbf{H}x$

Homography maps a **point** to a **point**

Where does the Essential matrix come from?

properties of the E matrix

Longuet-Higgins equation

 $\mathbf{x}'^{\top}\mathbf{E}\mathbf{x} = 0$

(points in normalized coordinates)

properties of the E matrix

Longuet-Higgins equation

 $\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x} = 0$

Epipolar lines

(points in normalized coordinates)

properties of the E matrix

Longuet-Higgins equation

 $\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x} = 0$

Epipolar lines	$\boldsymbol{x}^{ op} \boldsymbol{l} = 0$	$\boldsymbol{x}'^{ op} \boldsymbol{l}' = 0$
	$\boldsymbol{l}'=\mathbf{E}\boldsymbol{x}$	$oldsymbol{l} = \mathbf{E}^T oldsymbol{x}'$

Epipoles $e'^{ op} \mathbf{E} = \mathbf{0}$ $\mathbf{E} e = \mathbf{0}$

(points in normalized <u>camera</u> coordinates)

Recall: Epipolar constraint

Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.

How do you generalize to uncalibrated cameras?

The fundamental matrix

The **Fundamental matrix** is a generalization of the **Essential matrix**, where the assumption of calibrated cameras is removed

 $\hat{x}^{\prime op} \mathbf{E} \hat{x} = 0$

The Essential matrix operates on image points expressed in normalized coordinates

(points have been aligned (normalized) to camera coordinates)

 $\hat{x} = \mathbf{K}^{-1} x$

camera point image point

Writing out the epipolar constraint in terms of image coordinates

$$x'^{\top}\mathbf{K}'^{-\top}\mathbf{E}\mathbf{K}^{-1}x = 0$$

 $x'^{\top}(\mathbf{K}'^{-\top}\mathbf{E}\mathbf{K}^{-1})x = 0$
 $x'^{\top}\mathbf{F}x = 0$

Same equation works in image coordinates!

$\boldsymbol{x}^{\prime \top} \mathbf{F} \boldsymbol{x} = 0$

it maps pixels to epipolar lines

properties of the Ematrix

Longuet-Higgins equation

 $x'^{\top} \mathbf{E} x = 0$

Epipolar lines	$oldsymbol{x}^{ op}oldsymbol{l}=0$	$oldsymbol{x}'^ opoldsymbol{l}'=0$
	$oldsymbol{l}' = oldsymbol{\mathbb{E}} oldsymbol{x}$	$oldsymbol{l} = oldsymbol{\mathbb{E}}^T oldsymbol{x}'$

Epipoles $e'^{ op} \mathbf{E} = \mathbf{0}$ $\mathbf{E} = \mathbf{0}$

(points in **image** coordinates)

Breaking down the fundamental matrix

$\mathbf{F} = \mathbf{K}'^{-\top} \mathbf{E} \mathbf{K}^{-1}$ $\mathbf{F} = \mathbf{K}'^{-\top} [\mathbf{t}_{\mathsf{X}}] \mathbf{R} \mathbf{K}^{-1}$

Depends on both intrinsic and extrinsic parameters

Breaking down the fundamental matrix

$\mathbf{F} = \mathbf{K}'^{-\top} \mathbf{E} \mathbf{K}^{-1}$ $\mathbf{F} = \mathbf{K}'^{-\top} [\mathbf{t}_{\mathsf{X}}] \mathbf{R} \mathbf{K}^{-1}$

Depends on both intrinsic and extrinsic parameters

How would you solve for F?

$$oldsymbol{x}_m^{\prime op} \mathbf{F} oldsymbol{x}_m = 0$$

The 8-point algorithm

Assume you have *M* matched *image* points

$$\{oldsymbol{x}_m,oldsymbol{x}_m'\}$$
 $m=1,\ldots,M$

Each correspondence should satisfy

$$oldsymbol{x}_m^{\prime op} \mathbf{F} oldsymbol{x}_m = 0$$

How would you solve for the 3 x 3 **F** matrix?

Assume you have *M* matched *image* points

$$\{oldsymbol{x}_m,oldsymbol{x}_m'\}$$
 $m=1,\ldots,M$

Each correspondence should satisfy

$$oldsymbol{x}_m^{\prime op} \mathbf{F} oldsymbol{x}_m = 0$$

How would you solve for the 3 x 3 **F** matrix?

S V D

Assume you have *M* matched *image* points

$$\{oldsymbol{x}_m,oldsymbol{x}_m'\}$$
 $m=1,\ldots,M$

Each correspondence should satisfy

$$oldsymbol{x}_m^{\prime op} \mathbf{F} oldsymbol{x}_m = 0$$

How would you solve for the 3 x 3 **F** matrix?

Set up a homogeneous linear system with 9 unknowns

$$oldsymbol{x}_m^{\prime op} \mathbf{F} oldsymbol{x}_m = 0$$

 $\left[egin{array}{cccc} x_m^{\prime} & y_m^{\prime} & 1 \end{array}
ight] \left[egin{array}{cccc} f_1 & f_2 & f_3 \ f_4 & f_5 & f_6 \ f_7 & f_8 & f_9 \end{array}
ight] \left[egin{array}{cccc} x_m \ y_m \ 1 \end{array}
ight] = 0$

How many equation do you get from one correspondence?

$$\begin{bmatrix} x'_{m} & y'_{m} & 1 \end{bmatrix} \begin{bmatrix} f_{1} & f_{2} & f_{3} \\ f_{4} & f_{5} & f_{6} \\ f_{7} & f_{8} & f_{9} \end{bmatrix} \begin{bmatrix} x_{m} \\ y_{m} \\ 1 \end{bmatrix} = 0$$

ONE correspondence gives you ONE equation

$$\begin{aligned} x_m x'_m f_1 + x_m y'_m f_2 + x_m f_3 + \\ y_m x'_m f_4 + y_m y'_m f_5 + y_m f_6 + \\ x'_m f_7 + y'_m f_8 + f_9 &= 0 \end{aligned}$$

$$\begin{bmatrix} x'_{m} & y'_{m} & 1 \end{bmatrix} \begin{bmatrix} f_{1} & f_{2} & f_{3} \\ f_{4} & f_{5} & f_{6} \\ f_{7} & f_{8} & f_{9} \end{bmatrix} \begin{bmatrix} x_{m} \\ y_{m} \\ 1 \end{bmatrix} = 0$$

Set up a homogeneous linear system with 9 unknowns

How many equations do you need?

Each point pair (according to epipolar constraint) contributes only one <u>scalar</u> equation

 $x'_m \mathbf{F} x_m = 0$

Note: This is different from the Homography estimation where each point pair contributes 2 equations.

We need at least 8 points

Hence, the 8 point algorithm!

How do you solve a homogeneous linear system?

$\mathbf{A}\mathbf{X} = \mathbf{0}$

How do you solve a homogeneous linear system?

$\mathbf{A}\mathbf{X} = \mathbf{0}$

Total Least Squares minimize $\|\mathbf{A}\mathbf{x}\|^2$ subject to $\|\mathbf{x}\|^2 = 1$ How do you solve a homogeneous linear system?

$\mathbf{A}\mathbf{X} = \mathbf{0}$

Total Least Squaresminimize $\|\mathbf{A}\mathbf{x}\|^2$ subject to $\|\mathbf{x}\|^2 = 1$

SVD!

Eight-Point Algorithm

- 0. (Normalize points)
- 1. Construct the M x 9 matrix A
- 2. Find the SVD of A
- Entries of F are the elements of column of V corresponding to the least singular value
- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

Eight-Point Algorithm

- 0. (Normalize points)
- 1. Construct the M x 9 matrix A
- 2. Find the SVD of A
- 3. Entries of **F** are the elements of column of **V** corresponding to the least singular value
- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

See Hartley-Zisserman for why we do this
Eight-Point Algorithm

- 0. (Normalize points)
- 1. Construct the M x 9 matrix A
- 2. Find the SVD of A
- 3. Entries of **F** are the elements of column of **V** corresponding to the least singular value
- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

How do we do this?

Eight-Point Algorithm

- 0. (Normalize points)
- 1. Construct the M x 9 matrix A
- 2. Find the SVD of A
- 3. Entries of **F** are the elements of column of **V** corresponding to the least singular value
- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

How do we do this?

Enforcing rank constraints

Problem: Given a matrix F, find the matrix F' of rank k that is closest to F,

$$\min_{F'} \|F - F'\|^2$$
$$\operatorname{rank}(F') = k$$

Solution: Compute the singular value decomposition of F,

 $F = U\Sigma V^T$

Form a matrix Σ ' by replacing all but the k largest singular values in Σ with 0.

Then the problem solution is the matrix **F'** formed as,

$$F' = U\Sigma'V^T$$

Eight-Point Algorithm

- 0. (Normalize points)
- 1. Construct the M x 9 matrix A
- 2. Find the SVD of A
- Entries of F are the elements of column of V corresponding to the least singular value
- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

Example

epipolar lines

	-0.00310695	-0.0025646	2.96584]
$\mathbf{F} = $	-0.028094	-0.00771621	56.3813
	13.1905	-29.2007	-9999.79

$$l' = \mathbf{F} m{x} \ = \begin{bmatrix} 0.0295 \ 0.9996 \ -265.1531 \end{bmatrix}$$

Where is the epipole?

How would you compute it?

$\mathbf{F} \boldsymbol{e} = \boldsymbol{0}$

The epipole is in the right null space of ${\ensuremath{\mathsf{F}}}$

How would you solve for the epipole?

(hint: this is a homogeneous linear system)

$\mathbf{F} \boldsymbol{e} = \boldsymbol{0}$

The epipole is in the right null space of ${\bf F}$

How would you solve for the epipole?

SVD!

(hint: this is a homogeneous linear system)

eigenvalue		
d = 1.0e8*		
-1.0000	0	0
0	-0.0000	0
0	0	-0.0000

>>
$$[u,d] = eigs(F' * F)$$

eigenvectors
 $u =$
 -0.0013 0.2586
 0.0029 -0.9660
 1.0000 0.0032 -0.2586
 -0.2586
 -0.0005
eigenvalue
 $d = 1.0e8*$
 -1.0000 0 0
 0 -0.0000 0
 0 -0.0000

Eigenvector	- assoc	iated	with
sma	allest e	igenv	alue

>> uu = u(:,3)
(-0.9660 -0.2586 -0.0005)

Eigenvector associated with
smallest eigenvalue>>
$$uu = u(:, 3)$$
(-0.9660-0.2586-0.0005

Epipole projected to image coordinates

>> uu / uu(3) (1861.02 498.21 1.0)

Epipole projected to image coordinates

>> uu / uu(3) (1861.02 498.21 1.0)

References

Basic reading:

- Szeliski textbook, Sections 7.1, 7.2, 11.1.
- Hartley and Zisserman, Chapters 9, 11, 12.