Structure from motion

http://www.cs.cmu.edu/~16385/
16-385 Computer Vision Spring 2019, Lecture 12

Course announcements

- Homework 3 has been posted and is due on March $10^{\text {th }}$.
- Yes, this is during the spring break per popular demand.
- No, you don't have to work during spring break:
-- This is the same homework that was originally planned for March $8^{\text {th }}$.
-- You can finish the homework by March $8^{\text {th }}$.
-- Shifting the deadline to March $10^{\text {th }}$ means that everyone gets two extra late days for free.
- Any questions about the homework?
- How many of you have looked at/started/finished homework 3?
- Grades for homework 1 will be posted tonight.
- Grades for homework 2 will be posted before the mid-semester grades are due.
- Yannis will have extra office hours Tuesday 3-5 pm.

Overview of today's lecture

Leftover from lecture 11:

- Template matching.
- Structured light.

New in lecture 12:

- A note on normalization.
- Two-view structure from motion.
- Ambiguities in structure from motion.
- Affine structure from motion.
- Multi-view structure from motion.
- Large-scale structure from motion.

Slide credits

Many of these slides were adapted from:

- Kris Kitani (16-385, Spring 2017).
- Noah Snavely (Cornell University).
- Rob Fergus (New York University).

A note on normalization

Estimating F-8-point algorithm

- The fundamental matrix F is defined by

$$
\mathbf{x}^{\prime \mathrm{T}} \mathbf{F} \mathbf{x}=0
$$

for any pair of matches x and x^{\prime} in two images.

- Let $\mathrm{x}=(u, v, 1)^{\top}$ and $\mathrm{x}^{\prime}=\left(u^{\prime}, v^{\prime}, 1\right)^{\top}, \quad \mathbf{F}=\left[\begin{array}{lll}f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33}\end{array}\right]$ each match gives a linear equation

$$
u u^{\prime} f_{11}+v u^{\prime} f_{12}+u^{\prime} f_{13}+u v^{\prime} f_{21}+v v^{\prime} f_{22}+v^{\prime} f_{23}+u f_{31}+v f_{32}+f_{33}=0
$$

Problem with 8-point algorithm

Normalized 8-point algorithm

 normalized least squares yields good resultsTransform image to $\sim[-1,1] \times[-1,1]$

Normalized 8-point algorithm

1. Transform input by $\hat{\mathbf{x}}_{\mathbf{i}}=\mathbf{T x}_{\mathbf{i}}, \hat{\mathbf{x}}_{\mathbf{i}}^{\prime}=\mathbf{T x}_{\mathbf{i}}^{\prime}$
2. Call 8-point on $\hat{\mathbf{x}}_{\mathbf{i}}, \hat{\mathbf{x}}_{\mathbf{i}}^{\prime}$ to obtain $\hat{\mathbf{F}}$
3. $\mathbf{F}=\mathbf{T}^{\mathrm{T}} \hat{\mathbf{F}} \mathbf{T}$

Normalized 8-point algorithm

```
[x1, T1] = normalise2dpts(x1);
[x2, T2] = normalise2dpts(x2);
A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)'
    x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)'
    x1(1,:)
    x1(2,:)'
ones(npts,1) ];
[U,D,V] = svd(A);
F = reshape(V(:,9),3,3)';
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';
\% Denormalise
\(\mathrm{F}=\mathrm{T} 2 \mathrm{I}^{\mathrm{F}} \mathrm{F}^{\mathrm{T}} 1\);
```


Results (ground truth)

Results (8-point algorithm)

Results (normalized 8-point algorithm)

■ Normalized 8-point algorithm

Two-view structure from motion

Structure
 (scene geometry)
 Motion
 (camera geometry)
 Measurements

3D to 2D correspondences

2D to 2D coorespondences
estimate

2D to 2D coorespondences

Structure from motion

Camera calibration \& triangulation

- Suppose we know 3D points
- And have matches between these points and an image
- How can we compute the camera parameters?
- Suppose we have know camera parameters, each of which observes a point
- How can we compute the 3D location of that point?

Structure from motion

- SfM solves both of these problems at once
- A kind of chicken-and-egg problem
- (but solvable)

Reconstruction

(2 view structure from motion)
Given a set of matched points

$$
\left\{\boldsymbol{x}_{i}, \boldsymbol{x}_{i}^{\prime}\right\}
$$

Estimate the camera matrices

$$
\mathbf{P}, \mathbf{P}^{\prime}
$$

Estimate the 3D point
X

Reconstruction

(2 view structure from motion)
Given a set of matched points

$$
\left\{\boldsymbol{x}_{i}, \boldsymbol{x}_{i}^{\prime}\right\}
$$

Estimate the camera matrices

$$
\mathbf{P}, \mathbf{P}^{\prime}<\text { 'motion' }
$$

Estimate the 3D point

Two-view SfM

1. Compute the Fundamental Matrix \mathbf{F} from points correspondences

$$
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0
$$

Two-view SfM

1. Compute the Fundamental Matrix \mathbf{F} from points correspondences 8-point algorithm

$$
\boldsymbol{x}_{m}^{\prime \boldsymbol{T}} \mathbf{F} \boldsymbol{x}_{m}=0
$$

Two-view SfM

1. Compute the Fundamental Matrix \mathbf{F} from points correspondences 8-point algorithm
2. Compute the camera matrices \mathbf{P} from the Fundamental matrix

$$
\mathbf{P}=[\mathbf{I} \mid \mathbf{0}] \text { and } \mathbf{P}^{\prime}=\left[\left[\mathbf{e}_{\mathrm{x}}\right] \mathbf{F} \mid \mathbf{e}^{\prime}\right]
$$

Camera matrices corresponding to the fundamental matrix \mathbf{F} may be chosen as

$$
\mathbf{P}=[\mathbf{I} \mid \mathbf{0}] \quad \mathbf{P}^{\prime}=\left[\left[e_{\times}\right] \mathbf{F} \mid e^{\prime}\right]
$$

(See Hartley and Zisserman C. 9 for proof)

Find the configuration where the points is in front of both cameras

Two-view SfM

1. Compute the Fundamental Matrix \mathbf{F} from points correspondences 8-point algorithm
2. Compute the camera matrices \mathbf{P} from the Fundamental matrix

$$
\mathbf{P}=[\mathbf{I} \mid \mathbf{0}] \text { and } \mathbf{P}^{\prime}=\left[\left[\mathbf{e}^{\prime} x\right] \mathbf{F} \mid \mathbf{e}^{\prime}\right]
$$

3. For each point correspondence, compute the point \mathbf{X} in 3D space (triangularization)
DLT with $\mathrm{X}=\mathrm{P} \mathbf{X}$ and $\mathrm{x}^{\prime}=\mathrm{P}^{\prime} \mathrm{X}$

Triangulation

Two-view SfM

1. Compute the Fundamental Matrix \mathbf{F} from points correspondences 8-point algorithm
2. Compute the camera matrices \mathbf{P} from the Fundamental matrix

$$
\mathbf{P}=[\mathbf{I} \mid \mathbf{0}] \text { and } \mathbf{P}^{\prime}=\left[\left[\mathbf{e}^{\prime} x\right] \mathbf{F} \mid \mathbf{e}^{\prime}\right]
$$

3. For each point correspondence, compute the point \mathbf{X} in 3D space (triangularization)
DLT with $\mathrm{X}=\mathrm{P} \mathbf{X}$ and $\mathrm{x}^{\prime}=\mathrm{P}^{\prime} \mathrm{X}$

Is SfM always uniquely solvable?

Ambiguities in structure from motion

Is SfM always uniquely solvable?

- No...

SfM - Failure cases

- Necker reversal

Projective Ambiguity

- Reconstruction is ambiguous by an arbitrary 3D projective transformation without prior knowledge of camera parameters

Structure from motion

- Given: m images of n fixed 3D points

$$
\mathbf{x}_{i j}=\mathbf{P}_{i} \mathbf{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Problem: estimate m projection matrices \mathbf{P}_{i} and $n 3$ D points \mathbf{X}_{j} from the $m n$ correspondences $\mathbf{x}_{i j}$

Structure from motion ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1 / k$, the projections of the scene points in the image remain exactly the same:

$$
\mathbf{x}=\mathbf{P X}=\left(\frac{1}{k} \mathbf{P}\right)(k \mathbf{X})
$$

It is impossible to recover the absolute scale of the scene!

Structure from motion ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1 / k$, the projections of the scene points in the image remain exactly the same
- More generally: if we transform the scene using a transformation \mathbf{Q} and apply the inverse transformation to the camera matrices, then the images do not change

$$
\mathbf{x}=\mathbf{P X}=\left(\mathbf{P Q}^{-1}\right)(\mathbf{Q X})
$$

Calibrated cameras

(similarity projection ambiguity)

Uncalibrated cameras

(projective projection ambiguity)

Types of ambiguity

Projective 15dof

Affine 12dof

Similarity 7dof

Euclidean 6dof

Preserves intersection and tangency

Preserves parallellism, volume ratios

Preserves angles, ratios of length

Preserves angles, lengths

- With no constraints on the camera calibration matrix or on the scene, we get a projective reconstruction
- Need additional information to upgrade the reconstruction to affine, similarity, or Euclidean

Projective ambiguity

Projective ambiguity

Affine ambiguity

$$
\mathbf{x}=\mathbf{P X}=\left(\mathbf{P} \mathbf{Q}_{\wedge}^{-1}\right)\left(\mathbf{Q}_{\mathbf{A}} \mathbf{x}\right)
$$

Affine ambiguity

Similarity ambiguity

$$
\begin{gathered}
\mathbf{x}=\mathbf{P X}=\left(\mathbf{P} \mathbf{Q}_{\mathbf{S}}^{-1}\right)\left(\mathbf{Q}_{\mathbf{S}} \mathbf{X}\right)
\end{gathered}
$$

Similarity ambiguity

What can we do to remove ambiguities?

Affine structure from motion

Structure from motion

- Let's start with affine cameras (the math is easier)

center at infinity

Recall: Orthographic Projection

Special case of perspective projection

- Distance from center of projection to image plane is infinite

- Projection matrix:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

Affine cameras

Affine cameras

- A general affine camera combines the effects of an affine transformation of the 3D space, orthographic projection, and an affine transformation of the image:

$$
\mathbf{P}=[3 \times 3 \text { affine }]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right][4 \times 4 \text { affine }]=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{b} \\
\mathbf{0} & \mathbf{1}
\end{array}\right]
$$

- Affine projection is a linear mapping + translation in inhomogeneous coordinates

$$
\begin{aligned}
& \mathbf{x}=\binom{x}{y}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)+\binom{b_{1}}{b_{2}}=\mathbf{A X}+\mathbf{b} \\
& \cdots \mathbf{X} \\
& \text { Projection of } \\
& \text { world origin }
\end{aligned}
$$

Affine structure from motion

- Given: m images of n fixed 3D points:

$$
\mathbf{x}_{i j}=\mathbf{A}_{i} \mathbf{X}_{j}+\mathbf{b}_{i}, \quad i=1, \ldots, m, j=1, \ldots, n
$$

- Problem: use the $m n$ correspondences $\mathbf{x}_{i j}$ to estimate m projection matrices \mathbf{A}_{i} and translation vectors \mathbf{b}_{i}, and n points \mathbf{X}_{j}
- The reconstruction is defined up to an arbitrary affine transformation \mathbf{Q} (12 degrees of freedom):

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{b} \\
\mathbf{0} & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
\mathbf{A} & \mathbf{b} \\
\mathbf{0} & 1
\end{array}\right] \mathbf{Q}^{-1}, \quad\binom{\mathbf{X}}{\mathbf{1}} \rightarrow \mathbf{Q}\binom{\mathbf{X}}{\mathbf{1}}
$$

- We have $2 m n$ knowns and $8 m+3 n$ unknowns (minus 12 dof for affine ambiguity)
- Thus, we must have $2 m n>=8 m+3 n-12$
- For two views, we need four point correspondences

Affine structure from motion

- Centering: subtract the centroid of the image points

$$
\begin{aligned}
\hat{\mathbf{x}}_{i j} & =\mathbf{x}_{i j}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{i k}=\mathbf{A}_{i} \mathbf{X}_{j}+\mathbf{b}_{i}-\frac{1}{n} \sum_{k=1}^{n}\left(\mathbf{A}_{i} \mathbf{X}_{k}+\mathbf{b}_{i}\right) \\
& =\mathbf{A}_{i}\left(\mathbf{X}_{j}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k}\right)=\mathbf{A}_{i} \hat{\mathbf{x}}_{j}
\end{aligned}
$$

- For simplicity, assume that the origin of the world coordinate system is at the centroid of the 3D points
- After centering, each normalized point $\mathbf{x}_{i j}$ is related to the 3D point \mathbf{X}_{i} by

$$
\hat{\mathbf{x}}_{i j}=\mathbf{A}_{i} \mathbf{X}_{j}
$$

Affine structure from motion

- Let's create a $2 m \times n$ data (measurement) matrix:

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. IJCV, 9(2):137-154, November 1992.

Affine structure from motion

- Let's create a $2 m \times n$ data (measurement) matrix:

$$
\mathbf{D}=\left[\begin{array}{cccc}
\hat{\mathbf{x}}_{11} & \hat{\mathbf{x}}_{12} & \cdots & \hat{\mathbf{x}}_{1 n} \\
\hat{\mathbf{x}}_{21} & \hat{\mathbf{x}}_{22} & \cdots & \hat{\mathbf{x}}_{2 n} \\
& & \ddots & \\
\hat{\mathbf{x}}_{m 1} & \hat{\mathbf{x}}_{m 2} & \cdots & \hat{\mathbf{x}}_{m n}
\end{array}\right]=\begin{gathered}
{\left[\begin{array}{c}
\mathbf{A}_{1} \\
\mathbf{A}_{2} \\
\vdots \\
\mathbf{A}_{m}
\end{array}\right]\left[\begin{array}{llll}
\mathbf{X}_{1} & \mathbf{X}_{2} & \cdots & \mathbf{X}_{n}
\end{array}\right]} \\
\text { points }(3 \times n)
\end{gathered}
$$

The measurement matrix $\mathbf{D}=\mathbf{M S}$ must have rank 3!
C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:

A factorization method. IJCV, 9(2):137-154, November 1992.

Factorizing the measurement matrix

Factorizing the measurement matrix

- Singular value decomposition of D :

Factorizing the measurement matrix

- Singular value decomposition of D :

To reduce to rank 3, we
3

Factorizing the measurement matrix

- Obtaining a factorization from SVD:

This decomposition minimizes
|D-MS| ${ }^{2}$

Affine ambiguity

- The decomposition is not unique. We get the same D by using any 3×3 matrix \mathbf{C} and applying the transformations $\mathbf{M} \rightarrow \mathbf{M C}, \mathbf{S} \rightarrow \mathbf{C}^{-1} \mathbf{S}$
- That is because we have only an affine transformation and we have not enforced any Euclidean constraints (like forcing the image axes to be perpendicular, for example)

Eliminating the affine ambiguity

- Orthographic: image axes are perpendicular and of unit length

Solve for orthographic constraints

Three equations for each image i

$$
\left.\begin{array}{lll}
\tilde{\mathbf{a}}_{i 1}^{T} \mathbf{C C}^{T} \tilde{\mathbf{a}}_{i 1}^{T}=1 \\
\tilde{\mathbf{a}}_{i 2}^{T} \mathbf{C C}^{T} \tilde{\mathbf{a}}_{i 2}^{T}=1 & \text { where } & \tilde{\mathbf{A}}_{i}=\left[\begin{array}{c}
\tilde{\mathbf{a}}_{i 1}^{T} \\
\tilde{\mathbf{a}}_{i 1}^{T} \mathbf{C C}^{T} \tilde{\mathbf{a}}_{i 2}^{T}=0
\end{array}\right] \\
\tilde{\mathbf{a}}_{i 2}^{T}
\end{array}\right]
$$

- Solve for $\mathbf{L}=\mathbf{C C}^{\boldsymbol{\top}}$
- Recover C from L by Cholesky decomposition: L $=C^{\top}$
- Update \mathbf{A} and $\mathbf{X}: \mathbf{A}=\tilde{\mathbf{A}} \mathbf{C}, \mathbf{X}=\mathbf{C}^{-1} \tilde{\mathbf{X}}$

Algorithm summary

- Given: m images and n features $\mathbf{x}_{i j}$
- For each image i, center the feature coordinates
- Construct a $2 m \times n$ measurement matrix \mathbf{D} :
- Column j contains the projection of point j in all views
- Row i contains one coordinate of the projections of all the n points in image i
- Factorize D:
- Compute SVD: D=U W V ${ }^{\boldsymbol{\top}}$
- Create \mathbf{U}_{3} by taking the first 3 columns of \mathbf{U}
- Create \mathbf{V}_{3} by taking the first 3 columns of \mathbf{V}
- Create \mathbf{W}_{3} by taking the upper left 3×3 block of \mathbf{W}
- Create the motion and shape matrices:
- $\mathbf{M}=\mathbf{U}_{3} \mathbf{W}_{3}^{1 / 2}$ and $\mathbf{S}=\mathbf{W}_{3}{ }^{1 / 2} \mathbf{V}_{3}{ }^{\top}\left(\right.$ or $\mathbf{M}=\mathbf{U}_{3}$ and $\left.\mathbf{S}=\mathbf{W}_{3} \mathbf{V}_{3}{ }^{\top}\right)$
- Eliminate affine ambiguity

Reconstruction results

1

120

60

150

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. IJCV, 9(2):137-154, November 1992.

Multi-view projective structure from motion

Projective structure from motion

- Given: m images of n fixed 3D points

$$
z_{i j} \mathbf{x}_{i j}=\mathbf{P}_{i} \mathbf{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Problem: estimate m projection matrices \mathbf{P}_{i} and n 3D points \mathbf{X}_{j} from the $m n$ correspondences $\mathbf{x}_{i j}$

Projective structure from motion

- Given: m images of n fixed 3D points

$$
z_{i j} \mathbf{x}_{i j}=\mathbf{P}_{i} \mathbf{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Problem: estimate m projection matrices \mathbf{P}_{i} and n 3D points \mathbf{X}_{j} from the $m n$ correspondences $\mathbf{x}_{i j}$
- With no calibration info, cameras and points can only be recovered up to a 4×4 projective transformation \mathbf{Q} :

$$
\mathbf{X} \rightarrow \mathbf{Q X}, \mathbf{P} \rightarrow \mathbf{P Q}^{-1}
$$

- We can solve for structure and motion when

$$
2 m n>=11 m+3 n-15
$$

- For two cameras, at least 7 points are needed

Projective SFM: Two-camera case

- Compute fundamental matrix \mathbf{F} between the two views
- First camera matrix: [I|0]
- Second camera matrix: [A|b]
- Then \mathbf{b} is the epipole $\left(\mathbf{F}^{\mathrm{T}} \mathbf{b}=0\right), \mathbf{A}=-\left[\mathbf{b}_{\mathbf{x}}\right] \mathbf{F}$

Sequential structure from motion

-Initialize motion from two images using fundamental matrix
-Initialize structure by triangulation
points
-For each additional view:

- Determine projection matrix of new camera using all the known 3D points that are visible in its image - calibration

Sequential structure from motion

-Initialize motion from two images using fundamental matrix
-Initialize structure by triangulation
-For each additional view:

- Determine projection matrix of new camera using all the known 3D points that are visible in its image - calibration
- Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera triangulation

Sequential structure from motion

-Initialize motion from two images using fundamental matrix
-Initialize structure by triangulation
points
-For each additional view:

- Determine projection matrix of new camera using all the known 3D points that are visible in its image - calibration
- Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera triangulation
-Refine structure and motion: bundle adjustment

Bundle adjustment

- Non-linear method for refining structure and motion
- Minimizing reprojection error

$$
E(\mathbf{P}, \mathbf{X})=\sum_{i=1}^{m} \sum_{j=1}^{n} D\left(\mathbf{x}_{i j}, \mathbf{P}_{i} \mathbf{X}_{j}\right)^{2}
$$

Review: Structure from motion

- Ambiguity
- Affine structure from motion
- Factorization
- Dealing with missing data
- Incremental structure from motion
- Projective structure from motion
- Bundle adjustment

Structure
 (scene geometry)
 Motion
 (camera geometry)
 Measurements

3D to 2D correspondences

2D to 2D coorespondences
estimate

2D to 2D coorespondences

Large-scale structure from motion

Structure from motion

- Input: images with points in correspondence

$$
p_{i, j}=\left(u_{i, j}, v_{i, j}\right)
$$

- Output
- structure: 3D location \mathbf{x}_{i} for each point p_{i}
- motion: camera parameters $\mathbf{R}_{j}, \mathbf{t}_{j}$ possibly \mathbf{K}_{j}
- Objective function: minimize reprojection error

Standard way to view photos

Photo Tourism

Input: Point correspondences

Feature detection

Feature matching

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature description

Describe features using SIFT [Lowe, IJCV 2004]

Feature matching

Match features between each pair of images

Feature matching

Refine matching using RANSAC to estimate fundamental matrix between each pair

Correspondence estimation

- Link up pairwise matches to form connected components of matches across several images

Image connectivity graph

(graph layout produced using the Graphviz toolkit: http://www.graphviz.org/)

Structure from motion

Global structure from motion

- Minimize sum of squared reprojection errors:

$$
g(\mathbf{X}, \mathbf{R}, \mathbf{T})=\sum_{i=1}^{m} \sum_{j=1}^{n} \underbrace{w_{i j}}_{\substack{\downarrow \\
\text { indicator variable: } \\
\text { image location } \\
\text { is point } i \text { visible in image } j \text { ? }}} \cdot \underbrace{\| P\left(\mathbf{x}_{i}, \mathbf{R}_{j}, \mathbf{t}_{j}\right)}_{\begin{array}{c}
\text { predicted } \\
\text { image location }
\end{array}}-\underbrace{\left[\begin{array}{l}
u_{i, j} \\
v_{i, j}
\end{array}\right]}_{\text {observed }} \|^{2}
$$

- Minimizing this function is called bundle adjustment
- Optimized using non-linear least squares, e.g. Levenberg-Marquardt

Problem size

- What are the variables?
- How many variables per camera?
- How many variables per point?
- Trevi Fountain collection

466 input photos

+ > 100,000 3D points
= very large optimization problem

Doing bundle adjustment

- Minimizing g is difficult
$-g$ is non-linear due to rotations, perspective division
- lots of parameters: 3 for each 3D point, 6 for each camera
-difficult to initialize
-gauge ambiguity: error is invariant to a similarity transform (translation, rotation, uniform scale)
- Many techniques use non-linear least-squares (NLLS) optimization (bundle adjustment)
- Levenberg-Marquardt is one common algorithm for NLLS
- Lourakis, The Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the Levenberg-Marquardt Algorithm, http://www.ics.forth.gr/~lourakis/sba/
-http://en.wikipedia.org/wiki/Levenberg-Marquardt algorithm

Incremental structure from motion

Final reconstruction

More examples

More examples

More examples

-	0	-	\bigcirc	6)	3		\bigcirc	
D	-		\bigcirc	\bullet		0	O	\bigcirc
C	9					0	8	
\bigcirc	\bigcirc		0					
D			\bigcirc	\bigcirc	O			
-	,	O	\bigcirc					

Even larger scale SfM

City-scale structure from motion

- "Building Rome in a day"
http://grail.cs.washington.edu/projects/rome/

SfM applications

- 3D modeling
- Surveying
- Robot navigation and mapmaking
- Visual effects ("Match moving")
- https://www.youtube.com/watch?v=RdYWp70P kY

Applications - Photosynth

Applications - Hyperlapse

https://www.youtube.com/watch?v=SOpwHaQnRSY

Summary: 3D geometric vision

- Single-view geometry
- The pinhole camera model
- Variation: orthographic projection
- The perspective projection matrix
- Intrinsic parameters
- Extrinsic parameters
- Calibration
- Multiple-view geometry
- Triangulation
- The epipolar constraint
- Essential matrix and fundamental matrix
- Stereo
- Binocular, multi-view
- Structure from motion
- Reconstruction ambiguity
- Affine SFM
- Projective SFM

References

Basic reading:

- Szeliski textbook, Chapter 7.
- Hartley and Zisserman, Chapter 18.

