Introduction to semantic vision

http://www.cs.cmu.edu/~16385/

16-385 Computer Vision Spring 2018, Lecture 17

Course announcements

- Homework 5 will be posted tonight.
- Yannis has extra office hours today, 4-8 pm.
- Yannis' office hours on Friday will be covered by Neeraj.
- How many of you went to Matthias Niessner's talk today?
- Talk: Angela Dai, "Understanding 3D Scans," Thursday noon, GHC 6115.

Overview of today's lecture

Leftover from last lecture: radiometric calibration.

New in this lecture:

- Introduction to semantic vision.
- Image classification.
- Bag-of-words.
- K-means clustering.
- Classification.
- K nearest neighbors.
- Naïve Bayes.
- Support vector machine.

Slide credits

Most of these slides were adapted from:

- Kris Kitani (16-385, Spring 2017).
- Noah Snavely (Cornell University).
- Fei-Fei Li (Stanford University).

Course overview

1. Image processing.

Lectures 1 – 7 See also 18-793: Image and Video Processing

2. Geometry-based vision.

Lectures 7 – 12 See also 16-822: Geometry-based Methods in Vision

3. Physics-based vision.

 Lectures 13 – 16
See also 16-823: Physics-based Methods in Vision See also 15-463: Computational Photography

4. Semantic vision.

← We are starting this part now

5. Dealing with motion.

What do we mean by 'semantic vision'?

Is this a street light? (Verification / classification)

AUT

Object categorization

What type of scene is it? (Scene categorization)

Outdoor

Marketplace

City

AUT

Activity / Event Recognition

Object recognition Is it really so hard?

Find the chair in this image

Output of normalized correlation

This is a chair

Object recognition Is it really so hard?

Find the chair in this image

Pretty much garbage Simple template matching is not going to make it

A "popular method is that of template matching, by point to point correlation of a model pattern with the image pattern. These techniques are inadequate for three-dimensional scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation of parts." Nivatia & Binford, 1977.

And it can get a lot harder

Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422

How do humans do recognition?

- We don't completely know yet
- But we have some experimental observations.

Observation 1

 We can recognize familiar faces even in lowresolution images

Observation 2:

• High frequency information is not enough

What is the single most important facial features for recognition?

What is the single most important facial features for recognition?

Observation 4:

• Image Warping is OK

Spatial configuration matters too

Spatial configuration matters too

The list goes on

Face Recognition by Humans: Nineteen Results All Computer Vision Researchers Should Know About

<u>http://web.mit.edu/bcs/sinha/papers/19result</u>
<u>s sinha etal.pdf</u>

Why is this hard?

Variability:

Camera position Illumination Shape parameters

Challenge: variable viewpoint

Michelangelo 1475-1564

Challenge: variable illumination

image credit: J. Koenderink

from Apple.

(Actual size)

COLUMN TO A

Challenge: scale

Challenge: deformation

Deformation

Challenge: Occlusion

Magritte, 1957

Occlusion

Challenge: background clutter

Kilmeny Niland. 1995

Challenge: intra-class variations

Svetlana Lazebnik

Common approaches

Common approaches: object recognition

Feature Matching Spatial reasoning

Window classification

Feature matching

What object do these parts belong to?

Some local feature are very informative

a collection of local features (bag-of-features)

- · deals well with occlusion
- scale invariant
- rotation invariant

Are the positions of the parts important?

An object as

Why not use SIFT matching for everything?

• Works well for object instances

• Not great for generic object categories

Pros

- Simple
- Efficient algorithms
- Robust to deformations

Cons

• No spatial reasoning

Common approaches: object recognition

Feature Matching Spatial reasoning

Window classification

Spatial reasoning

The position of every part depends on the positions of all the other parts

Many parts, many dependencies!

1. Extract features

2. Match features

3. Spatial verification

1. Extract features

2. Match features

3. Spatial verification

1. Extract features

2. Match features

3. Spatial verification

an old idea...

Fu and Booth. Grammatical Inference. 1975

Structural (grammatical) description

Coded Chromosome

x = cdabbbdbbbabbcbbabbbdbbabb

Substructures of Coded Chromosome

 $S_1 = \{[b[[[a]b]b]b]; [b[b[b]b]b]; [b[b[a]]b]b]; [b[b[[[a]b]b]b]b]b]; [b[b[a]]b]b]\}$

The Representation and Matching of Pictorial Structures

MARTIN A. FISCHLER AND ROBERT A. ELSCHLAGER

Abstract—The primary problem dealt with in this paper is the following. Given some description of a visual object, find that object in an actual photograph. Part of the solution to this problem is the specification of a descriptive scheme, and a metric on which to base the decision of "goodness" of matching or detection.

We offer a combined descriptive scheme and decision metric which is general, intuitively satisfying, and which has led to promising experimental results. We also present an algorithm which takes the above descriptions, together with a matrix representing the intensities of the actual photograph, and then finds the described object in the matrix. The algorithm uses a procedure similar to dynamic programming in order to cut down on the vast amount of computation otherwise necessary.

One desirable feature of the approach is its generality. A new programming system does not need to be written for every new description; instead, one just specifies descriptions in terms of a certain set of primitives and parameters.

1972

		E
A		Ľ
В	. ~	F
C	X	G
D		н

Description for left edge of face

VALUE(X) = (E+F+G+H) - (A+B+C+D)

Note: VALUE(X) is the value assigned to the L(EV)A corresponding to the location X as a function of the intensities of locations A through H in the sensed scene. A more probabilistic approach...

vector of RVs:
$$L = \{L_1, L_2, \ldots, L_M\}$$

A more modern probabilistic approach...

A more modern probabilistic approach...

vector of RVs:
set of part locations:

$$L = \{L_1, L_2, \dots, L_M\}$$
image (N pixels)
What are the dimensions of R.V. L?

$$L_m = [x \ y]$$
How many possible combinations of part locations?

A more modern probabilistic approach...

vector of RVs:
$$L = \{L_1, L_2, \dots, L_M\}$$

image (N pixels)
 L_1
 L_2
 L_2
 $L_m = [x y]$
How many possible combinations of part locations?
 N^M

Most likely set of locations *L* is found by **maximizing**:

What kind of prior can we formulate?

Given any collection of selfie images, where would you expect the nose to be?

What would be an appropriate **prior**? $P(L_{nose}) = ?$

A simple factorized model $p(L) = \prod_{m} p(L_{m})$

Break up the joint probability into smaller (independent) terms

Independent locations

 $p(\boldsymbol{L}) = \prod p(L_m)$ m

Each feature is allowed to move independently

Does not model the **relative** location of parts at all

Tree structure (star model)

$$p(\boldsymbol{L}) = p(L_{\text{root}}) \prod_{m=1}^{M-1} p(L_m | L_{\text{root}})$$

Represent the location of all the parts relative to a single reference part

> Assumes that one reference part is defined (who will decide this?)

Fully connected (constellation model)

$$p(L) = p(l_1, \ldots, l_N)$$

Explicitly represents the joint distribution of locations

<u>Good model:</u> Models relative location of parts BUT Intractable for moderate number of parts

Pros

- Retains spatial constraints
- Robust to deformations

Cons

- Computationally expensive
- Generalization to large inter-class variation (e.g., modeling chairs)

Feature Matching Spatial reasoning

Window classification

Window-based

Template Matching

1. get image window

2. extract features

3. classify

When does this work and when does it fail? How many templates do you need?

Per-exemplar

find the 'nearest' exemplar, inherit its label

Template Matching

 get image window (or region proposals)

Do this part with one big classifier 'end to end learning'

A 96 x 96 image convolved with 400 filters (features) of size 8 x 8 generates about 3 million values (89²x400) Pooling aggregates statistics and lowers the dimension of convolution

KOdia	uger Eu	ropean fire salamand	ler loggernead	seat peit	television	sliding door	wallaby
wombat	tiger Eu	ropean fire salamander	African crocodile	seat belt	television	sliding door	hare
Norwegian elkhound	tiger cat	spotted salamander	Gila monster	ice lolly	microwave	shoji	wallaby
wild boar	jaguar	common newt	loggerhead	hotdog	monitor	window shade	wood rabbit
wallaby	lynx	long-horned beetle	mud turtle	burrito	screen	window screen	Lakeland terrier
koala	leopard	box turtle	leatherback turtle	Band Aid	car mirror	four-poster	kit fox

224/4=56

630 million connections 60 millions parameters to learn

Krizhevsky, A., Sutskever, I. and Hinton, G. E. ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012.
Pros

- Retains spatial constraints
- Efficient test time performance

Cons

- Many many possible windows to evaluate
- Requires large amounts of data
- Sometimes (very) slow to train

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models
- Mid-2000s: bags of features
- Present trends: data-driven methods, deep learning

What Matters in Recognition?

- Learning Techniques
 - E.g. choice of classifier or inference method
- Representation
 - Low level: SIFT, HoG, GIST, edges
 - Mid level: Bag of words, sliding window, deformable model
 - High level: Contextual dependence
 - Deep features
- Data
 - More is always better
 - Annotation is the hard part

Types of Recognition

- Instance recognition
 - Recognizing a known object but in a new viewpoint, with clutter and occlusion
 - Location/Landmark Recognition
 - Recognize Paris, Rome, ... in photographs
 - Ideas from information retrieval
- Category recognition
 - Harder problem, even for humans
 - Bag of words, part-based, recognition and segmentation

Simultaneous recognition and detection

PASCAL VOC 2005-2012

20 object classes

22,591 images

Segmentation

Classification: person, motorcycle

Action: riding bicycle

Everingham, Van Gool, Williams, Winn and Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010. The PASCAL Visual Object Classes Challenge 2009 (VOC2009)

- 20 object categories (aeroplane to TV/monitor)
- Three (+2) challenges:
 - Classification challenge (is there an X in this image?)
 - Detection challenge (draw a box around every X)
 - Segmentation challenge (which class is each pixel?)

Examples

Bicycle

Bird

Boat

Bottle

Bus

Cow

Classification Challenge

Predict whether at least one object of a given class is present in an image

is there a cat?

Pascal VOC 2007 Average Precision

Pascal VOC 2012 Average Precision

Detection Challenge

 Predict the bounding boxes of all objects of a given class in an image (if any)

True Positives - Person

UoCTTI_LSVM-MDPM

MIZZOU_DEF-HOG-LBP

False Positives - Person

UoCTTI_LSVM-MDPM

MIZZOU_DEF-HOG-LBP

"Near Misses" - Person

UoCTTI_LSVM-MDPM

MIZZOU_DEF-HOG-LBP

True Positives - Bicycle

UoCTTI_LSVM-MDPM

OXFORD_MKL

False Positives - Bicycle

UoCTTI_LSVM-MDPM

OXFORD_MKL

Where to from here?

- Scene Understanding
 - Big data lots of images
 - Crowd-sourcing lots of people
 - Deep Learning lots of compute

24 Hrs in Photos

http://www.kesselskramer.com/exhibitions/24-hrs-of-photos

installation by Erik Kessels

Daily Number of Photos Uploaded & Shared on Select Platforms, 2005 – 2014YTD

OKPCB Source: KPCB estimates based on publicly disclosed company data, 2014 YTD data per latest as of 5/14.

Data Sets

- ImageNet
 - Huge, Crowdsourced, Hierarchical, *Iconic* objects
- PASCAL VOC
 - Not Crowdsourced, bounding boxes, 20 categories
- SUN Scene Database, Places
 - Not Crowdsourced, 397 (or 720) scene categories
- LabelMe (Overlaps with SUN)
 - Sort of Crowdsourced, Segmentations, Open ended
- SUN Attribute database (Overlaps with SUN)
 - Crowdsourced, 102 attributes for every scene
- OpenSurfaces
 - Crowdsourced, materials
- Microsoft COCO
 - Crowdsourced, large-scale objects

IMAGENET Large Scale Visual Recognition Challenge (ILSVRC) 2010-2012

20 object classes 22,591 images

1000 object classes

1,431,167 images

http://image-net.org/challenges/LSVRC/{2010,2011,2012}

Variety of object classes in ILSVRC

PASCAL

birds

bottles

cars

ILSVRC

partridge

cock

quail

beer bottle wine bottle water bottle pop bottle

wagon race car

minivan

cab

Variety of object classes in ILSVRC

Deep Learning or CNNs

- Since 2012, huge impact..., best results
- Can soak up all the data for better prediction

IM GENET Large Scale Visual Recognition Challenge

Dense grid descriptor: HOG, LBP Coding: local coordinate, super-vector Pooling, SPM

<u>Year 2010</u>

NEC-UIUC

[Krizhevsky NIPS 2012]

[Lin CVPR 2011]

Image classification

Image Classification

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

cat

Image Classification: Problem

Data-driven approach

- Collect a database of images with labels
- Use ML to train an image classifier
- Evaluate the classifier on test images

Example training set

Bag of words

What object do these parts belong to?

Some local feature are very informative

a collection of local features (bag-of-features)

- · deals well with occlusion
- scale invariant
- rotation invariant

An object as

(not so) crazy assumption

spatial information of local features can be ignored for object recognition (i.e., verification)

CalTech6 dataset

class	bag of features	bag of features	Parts-and-shape model
	Zhang et al. (2005)	Willamowski et al. (2004)	Fergus et al. (2003)
airplanes	98.8	97.1	90.2
cars (rear)	98.3	98.6	90.3
cars (side)	95.0	87.3	88.5
faces	100	99.3	96.4
motorbikes	98.5	98.0	92.5
spotted cats	97.0		90.0

Works pretty well for image-level classification

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)
Bag-of-features

represent a data item (document, texture, image) as a histogram over features

an old idea

(e.g., texture recognition and information retrieval)

Texture recognition

Vector Space Model

G. Salton. 'Mathematics and Information Retrieval' Journal of Documentation, 1979

The	Newspa								
nday, December 22, 2013	sal, a contra contra contra								
The Tartan Rescue Team from Carnegie Mellon Jniversity's National Robotics Engineering Center ranked third among teams competing in the Defense Advanced Research Projects Agency (DARPA) Robotics Challenge Trials this	the series of values of the theory of a series of values of the theory of the two-day trials it demonstrated its ability to perform such tasks as removing debris, cutting a hole through a wall and closing a series of values of the two-day trials its beh								
		1	6	2	1	0	0	0	1
		Tartan	robot	CHIMP	CMU	bio	soft	ankle	sensor
weekend in Homestead, Fla., and was selected by the agency as one of eight		k							

D

Th fro Ur Ro Ce te D R

0 è

teams eligible for DARPA

A document (datapoint) is a vector of counts over each word (feature)

$$\boldsymbol{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$

 $n(\cdot)$ counts the number of occurrences

just a histogram over words

What is the similarity between two documents?

A document (datapoint) is a vector of counts over each word (feature)

$$\boldsymbol{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$

 $n(\cdot)$ counts the number of occurrences

just a histogram over words

What is the similarity between two documents?

Use any distance you want but the cosine distance is fast.

$$egin{aligned} d(oldsymbol{v}_i,oldsymbol{v}_j) &= \cos heta \ &= rac{oldsymbol{v}_i \cdot oldsymbol{v}_j}{\|oldsymbol{v}_i\|\|oldsymbol{v}_j\|} \end{aligned}$$

TF-IDF

Term Frequency Inverse Document Frequency

$$\boldsymbol{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$

weigh each word by a heuristic

$$\boldsymbol{v}_d = [n(w_{1,d})\alpha_1 \quad n(w_{2,d})\alpha_2 \quad \cdots \quad n(w_{T,d})\alpha_T]$$

Standard BOW pipeline

(for image classification)

Dictionary Learning:

Learn Visual Words using clustering

Encode:

build Bags-of-Words (BOW) vectors for each image

Classify: Train and test data using BOWs

Dictionary Learning: Learn Visual Words using clustering

1. extract features (e.g., SIFT) from images

Dictionary Learning: Learn Visual Words using clustering

2. Learn visual dictionary (e.g., K-means clustering)

What kinds of features can we extract?

- Regular grid
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005
- Interest point detector
 - Csurka et al. 2004
 - Fei-Fei & Perona, 2005
 - Sivic et al. 2005
- Other methods
 - Random sampling (Vidal-Naquet & Ullman, 2002)
 - Segmentation-based patches (Barnard et al. 2003)

Compute SIFT descriptor

[Lowe'99]

Normalize patch

Detect patches

[Mikojaczyk and Schmid '02] [Mata, Chum, Urban & Pajdla, '02] [Sivic & Zisserman, '03]

How do we learn the dictionary?

K-means clustering

1. Select initial
centroids at random

 Select initial centroids at random

2. Assign each object to the cluster with the nearest centroid.

1. Select initial centroids at random

2. Assign each object to the cluster with the nearest centroid.

3. Compute each centroid as the mean of the objects assigned to it (go to 2)

2. Assign each object to the cluster with the nearest centroid.

3. Compute each centroid as the mean of the objects assigned to it (go to 2)

mean of the objects assigned to

it (go to 2)

2. Assign each object to the cluster with the nearest centroid.

Repeat previous 2 steps until no change

K-means Clustering

Given k:

- 1.Select initial centroids at random.
- 2.Assign each object to the cluster with the nearest centroid.
- 3.Compute each centroid as the mean of the objects assigned to it.
- 4.Repeat previous 2 steps until no change.

From what **data** should I learn the dictionary?

From what **data** should I learn the dictionary?

- Dictionary can be learned on separate training set
- Provided the training set is sufficiently representative, the dictionary will be "universal"

Example visual dictionary

Example dictionary

Another dictionary

Dictionary Learning: Learn Visual Words using clustering

Encode:

build Bags-of-Words (BOW) vectors for each image

Classify: Train and test data using BOWs

1. Quantization: image features gets associated to a visual word (nearest cluster center)

Encode:

build Bags-of-Words (BOW) vectors for each image

Encode:

build Bags-of-Words (BOW) vectors

for each image

2. Histogram: count the number of visual word occurrences

codewords

frequency

Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

Classify: Train and test data using BOWs

K nearest neighbors

Naïve Bayes

Support Vector Machine

K nearest neighbors

Which class does q belong too?

K-Nearest Neighbor (KNN) Classifier

Non-parametric pattern classification approach

Consider a two class problem where each sample consists of two measurements (x,y).

For a given query point q, assign the class of the nearest neighbor

Compute the k nearest neighbors and assign the class by <u>majority vote</u>.

k = 1

Nearest Neighbor is competitive

40281508803277364755579284686500876/71127400776386420140578214711366 3112241082634006230)17113109975414 д, 31366090/ D S ລ S 28308784084458566309376893495891288681379011470817457121/30621280766 4/992/8013613411/560707232522949812/61278000822922799275/34941856283

Test Error Rate (%)

MNIST Digit Recognition	Linear classifier (1-layer NN)	12.
 Handwritten digits 		0
– 28x28 pixel images: d = 784	K-nearest-neighbors, Euclidean	5.0
 60,000 training samples 	K-nearest-neighbors, Euclidean,	2.4
 10,000 test samples 	deskewed	
	K-NN, Tangent Distance, 16x16	1.1
Yann LeCunn	K-NN, shape context matching	0.6 7
	1000 RBF + linear classifier	3.6

What is the best distance metric between data points?

- Typically Euclidean distance
- Locality sensitive distance metrics
- Important to normalize.
 Dimensions have different scales

How many K?

- Typically k=1 is good
- Cross-validation (try different k!)

Distance metrics

$$D(oldsymbol{x},oldsymbol{y})=\sqrt{(x_1-y_1)^2+\cdots+(x_N-y_N)^2}$$
 Euclidean

$$D(\boldsymbol{x}, \boldsymbol{y}) = \frac{\boldsymbol{x} \cdot \boldsymbol{y}}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|} = \frac{x_1 y_1 + \dots + x_N y_N}{\sqrt{\sum_n x_n^2} \sqrt{\sum_n y_n^2}}$$
Cosine

$$D(x, y) = \frac{1}{2} \sum_{n} \frac{(x_n - y_n)^2}{(x_n + y_n)}$$

Chi-squared

Choice of distance metric

- Hyperparameter
- L1 (Manhattan) distance $d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$ $d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2}$

- Two most commonly used special cases of p-norm $||x||_p = \left(|x_1|^p + \dots + |x_n|^p\right)^{\frac{1}{p}} \quad p \ge 1, x \in \mathbb{R}^n$

Visualization: L2 distance

CIFAR-10 and NN results

Example dataset: CIFAR-10 10 labels 50,000 training images 10,000 test images.

For every test image (first column), examples of nearest neighbors in rows

k-nearest neighbor

- Find the k closest points from training data
- Labels of the k points "vote" to classify

Hyperparameters

- What is the best distance to use?
- What is the best value of k to use?

• i.e., how do we set the hyperparameters?

- Very problem-dependent
- Must try them all and see what works best

Try out what hyperparameters work best on test set.

Trying out what hyperparameters work best on test set:

Very bad idea. The test set is a proxy for the generalization performance! Use only **VERY SPARINGLY**, at the end.

train data	test data
	- 10

Validation

Cross-validation

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that k \sim = 7 works best for this data)

How to pick hyperparameters?

- Methodology
 - Train and test
 - Train, validate, test
- Train for original model
- Validate to find hyperparameters
- Test to understand generalizability

Pros

simple yet effective

Cons

- search is expensive (can be sped-up)
- storage requirements
- difficulties with high-dimensional data

kNN -- Complexity and Storage

• N training images, M test images

- Training: O(1)
- Testing: O(MN)

- Hmm...
 - Normally need the opposite
 - Slow training (ok), fast testing (necessary)

k-Nearest Neighbor on images never used.

- terrible performance at test time
- distance metrics on level of whole images can be very unintuitive

(all 3 images have same L2 distance to the one on the left)

Naïve Bayes

Which class does q belong too?

This is called the posterior.

the probability of a class z given the observed features X

 $p(\boldsymbol{z}|\boldsymbol{X})$

For classification, z is a discrete random variable (e.g., car, person, building)

X is a set of observed features (e.g., features from a single image)

(it's a function that returns a single probability value)

This is called the posterior:

the probability of a class z given the observed features X

 $p(\boldsymbol{z}|\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N)$

For classification, z is a discrete random variable (e.g., car, person, building)

Each x is an observed feature (e.g., visual words)

(it's a function that returns a single probability value)

Recall:

The posterior can be decomposed according to **Bayes' Rule**

$$p(A|B) = rac{p(B|A)p(A)}{p(B)}$$

In our context...

$$p(oldsymbol{z}|oldsymbol{x}_1,\ldots,oldsymbol{x}_N) = rac{p(oldsymbol{x}_1,\ldots,oldsymbol{x}_N|oldsymbol{z})p(oldsymbol{z})}{p(oldsymbol{x}_1,\ldots,oldsymbol{x}_N)}$$

The naive Bayes' classifier is solving this optimization

$$\hat{z} = rgmax_{z \in oldsymbol{z}} p(z|oldsymbol{X})$$

MAP (maximum a posteriori) estimate

$$\hat{z} = \operatorname*{arg\,max}_{z \in \boldsymbol{\mathcal{Z}}} \frac{p(\boldsymbol{X}|z)p(z)}{p(\boldsymbol{X})}$$

Bayes' Rule

$$\hat{z} = rg \max_{z \in \mathcal{Z}} p(\mathbf{X}|z) p(z)$$

Remove constants

To optimize this...we need to compute this ~~J~

Compute the likelihood...

A naive Bayes' classifier assumes all features are conditionally independent

$$p(oldsymbol{x}_1, \dots, oldsymbol{x}_N | oldsymbol{z}) = p(oldsymbol{x}_1 | oldsymbol{z}) p(oldsymbol{x}_2, \dots, oldsymbol{x}_N | oldsymbol{z})$$

 $= p(oldsymbol{x}_1 | oldsymbol{z}) p(oldsymbol{x}_2 | oldsymbol{z}) p(oldsymbol{x}_3, \dots, oldsymbol{x}_N | oldsymbol{z})$
 $= p(oldsymbol{x}_1 | oldsymbol{z}) p(oldsymbol{x}_2 | oldsymbol{z}) \cdots p(oldsymbol{x}_N | oldsymbol{z})$

To compute the MAP estimate

Given (1) a set of known parameters (2) observations
$$p(m{z}) \quad p(m{x}|m{z}) \quad \{x_1, x_2, \dots, x_N\}$$

Compute which z has the largest probability

$$\hat{z} = rg\max_{z \in \mathbf{Z}} p(z) \prod_n p(x_n | z)$$

DARPA Selects Carnegie Me

The Tartan Rescue Team funding to prepare for next Ren from Carnegie Mellon December's finals. The foll University's National team's four-limbed CMU Robotics Engineering Highly Intelligent Mobile Center ranked third among Platform, or CHIMP, robot The teams competing in the scored 18 out of a possible tha Defense Advanced 32 points during the rela Research Projects Agency two-day trials. It the (DARPA) Robotics demonstrated its ability to beh Challenge Trials this perform such tasks as of a weekend in Homestead, removing debris, cutting a exp. Fla., and was selected by hole through a wall and in hi the agency as one of eight closing a series of valves. its teams eligible for DARPA heb

count	1	6	2	1	0	0	0	1
word	Tartan	robot	CHIMP	CMU	bio	soft	ankle	sensor
p(x z)	0.09	0.55	0.18	0.09	0.0	0.0	0.0	0.09

$$p(X|z) = \prod_{v} p(x_v|z)^{c(w_v)}$$
$$= (0.09)^1 (0.55)^6 \cdots (0.09)^1$$

Numbers get really small so use log probabilities

 $\log p(X|z = \text{`grandchallenge'}) = -2.42 - 3.68 - 3.43 - 2.42 - 0.07 - 0.07 - 0.07 - 2.42 = -14.58$

 $\log p(X|z = \text{`softrobot'}) = -7.63 - 9.37 - 15.18 - 2.97 - 0.02 - 0.01 - 0.02 - 2.27 = -37.48$

* typically add pseudo-counts (0.001)

** this is an example for computing the likelihood, need to multiply times prior to get posterior

teams eligible for DARPA

its

count	1	6	2	1	0	0	0	1
word	Tartan	robot	CHIMP	CMU	bio	soft	ankle	sensor
p(x z)	0.09	0.55	0.18	0.09	0.0	0.0	0.0	0.09

 $\log p(X|z=grand challenge) = -14.58$ log p(X|z=bio inspired) = -37.48

log p(X|z=grand challenge) = -94.06 $\log p(X|z=bio inspired) = -32.41$

Tartan Tim **Bio-Inspired Robotic Device**

PITTSBURGH-A soft,	BioSensics, developed an
wearable device that	active orthotic device :
mimics the muscles,	using soft plastics and
tendons and ligaments of	composite materials,
the lower leg could aid in	instead of a rigid '
the rehabilitation of	exoskeleton. The soft
patients with ankle-foot	materials, combined with
disorders such as drop	pneumatic artificial
foot, said Yong-Lae Park,	muscles (PAMs),
an assistant professor of	lightweight sensors and
robotics at Camegie	advanced control
Mellon University. Park,	software, made it possible :
working with collaborators	for the robotic device to
at Harvard University, the	achieve natural motions in
University of Southern	the ankle.
California MIT and	

http://www.fodey.com/generators/newspaper/snippet.asp

* typically add pseudo-counts (0.001)

** this is an example for computing the likelihood, need to multiply times prior to get posterior

Support Vector Machine

Image Classification

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

cat
Score function

class scores

Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Distribution of data from two classes

Which class does q belong too?

Distribution of data from two classes

First we need to understand hyperplanes...

Hyperplanes (lines) in 2D

 $w_1x_1 + w_2x_2 + b = 0$

a line can be written as dot product plus a bias

$$oldsymbol{w} \cdot oldsymbol{x} + b = 0$$

 $oldsymbol{w} \in \mathcal{R}^2$

another version, add a weight 1 and push the bias inside

 $oldsymbol{w} \cdot oldsymbol{x} = 0$ $oldsymbol{w} \in \mathcal{R}^3$

Hyperplanes (lines) in 2D

 $m{w}\cdotm{x}+b=0$ (offset/bias outside) $m{w}\cdotm{x}=0$ (offset/bias inside)

$$w_1 x_1 + w_2 x_2 + b = 0$$

Hyperplanes (lines) in 2D

 $m{w}\cdotm{x}+b=0$ (offset/bias outside) $m{w}\cdotm{x}=0$ (offset/bias inside)

$$w_1 x_1 + w_2 x_2 + b = 0$$

Important property: Free to choose any normalization of w

and the line

 $\lambda(w_1x_1 + w_2x_2 + b) = 0$

define the same line

Now we can go to 3D ...

Intuitively, the line that is the farthest from all interior points

most stable to perturbations of data

Want a hyperplane that is far away from 'inner points'

Find hyperplane **w** such that ...

Can be formulated as a maximization problem

$$\max_{\boldsymbol{w}} \frac{2}{\|\boldsymbol{w}\|}$$
subject to $\boldsymbol{w} \cdot \boldsymbol{x}_i + b \geq +1$ if $y_i = +1$ for $i = 1, \dots, N$
What does this constraint mean? Iabel of the data point

Why is it +1 *and* -1?

Can be formulated as a maximization problem

$$\begin{split} \max_{\boldsymbol{w}} \frac{2}{\|\boldsymbol{w}\|} \\ \text{subject to } \boldsymbol{w} \cdot \boldsymbol{x}_i + b & \geq +1 \quad \text{if } y_i = +1 \\ \leq -1 \quad \text{if } y_i = -1 \quad \text{for } i = 1, \dots, N \end{split}$$

Equivalently,

Where did the 2 go?

 $\min_{oldsymbol{w}} \|oldsymbol{w}\|$

subject to $y_i(\boldsymbol{w} \cdot \boldsymbol{x}_i + b) \geq 1$ for $i = 1, \dots, N$

What happened to the labels?

'Primal formulation' of a linear SVM

subject to
$$y_i(\boldsymbol{w} \cdot \boldsymbol{x}_i + b) \ge 1$$
 for $i = 1, \dots, N$
Constraints

This is a convex quadratic programming (QP) problem (a unique solution exists)

'soft' margin

What's the best \mathbf{w} ?

What's the best \mathbf{w} ?

Separating cats and dogs

Intuitively, we should allow for some misclassification if we can get more robust classification

Trade-off between the MARGIN and the MISTAKES (might be a better solution)

'soft' margin

'soft' margin

$\begin{array}{ll} \text{'soft' margin} \\ & \text{objective} & \text{subject to} \\ & \min_{\boldsymbol{w},\boldsymbol{\xi}} \|\boldsymbol{w}\|^2 + C \sum_i \xi_i & y_i(\boldsymbol{w}^\top \boldsymbol{x}_i + b) \geq 1 - \xi_i \\ & \text{for } i = 1, \dots, N \end{array}$

- Every constraint can be satisfied if slack is large
- C is a regularization parameter
 - Small C: ignore constraints (larger margin)
 - Big C: constraints (small margin)
- Still QP problem (unique solution)

C = Infinity hard margin

Comment Window		
SVM (L1) by Sequential Minimal Optimizer	~	
Kernel: linear (-), C: Inf		
Kernel evaluations: 971		
Number of Support Vectors: 3		
Margin: 0.0966		
Training error: 0.00%	~	

C = 10 soft margin

Comment V	Vindovv
SVM (L1) by Sequential Minimal Optimizer	<u>^</u>
Kernel evaluations: 2645	
Number of Support Vectors: 4	
Margin: 0.2265 Training error: 3.70%	×

References

Basic reading:Szeliski, Chapter 14.