INntroduction to neural networks

16-385 Computer Vision
http://www.cs.cmu.edu/~16385/ Spring 2019, Lecture 19

Course announcements

« Homework 5 has been posted and is due on April 10™.
- Any questions about the homework?
- How many of you have looked at/started/finished homework 57

 Homework 6 will be posted on Wednesday.
- There will be some adjustment in deadlines (and homework lengths), so that
homework 7 is not squeezed to 5 days.

Overview of today’s lecture

« Perceptron.

* Neural networks.

* Training perceptrons.
« Gradient descent.

« Backpropagation.

« Stochastic gradient descent.

Slide credits

Most of these slides were adapted from:
* Kris Kitani (16-385, Spring 2017).

* Noah Snavely (Cornell University).

» Fei-Fei Li (Stanford University).

« Andrej Karpathy (Stanford University).

Perceptron

1950s Age of the Perceptron

1957 The Perceptron (Rosenblatt)
1969 Perceptrons (Minsky, Papert)

1980s Age of the Neural Network

1986 Back propagation (Hinton)

1990s Age of the Graphical Model
2000s Age of the Support Vector Machine

2010s Age of the Deep Network

deep learning = known algorithms + computing power + big data

Learning representations
by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hintont
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

T Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of neurone-like units. The procedure repeatedly adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustments, internal ‘hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distin-
guishes back-propagation from earlier, simpler methods such as
the perceptron-convergence procedure’.

There have been many attempts to design self-organizing
neural networks. The aim is to find a powerful synaptic
modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for
a particular task domain. The task is specified by giving the
desired state vector of the output units for each state vector of
the input units. If the input units are directly connected to the
output units it is relatively easy to find learning rules that
iteratively adjust the relative strengths of the connections so as
to progressively reduce the difference between the actual and
desired output vectors®. Learning becomes more interesting but

t To whom correspondence should be addressed.

more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are ‘feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
input-output behaviour. This amounts to deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
appropriate internal representations.

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Connections within a layer or from higher to lower
layers are forbidden, but connections can skip intermediate
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in parallel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined.

The total input, x;, to unit j is a linear function of the outputs,
Yi, of the units that are connected to j and of the weights, w;,
on these connections

x]::Z.Viwji (1)

Units can be given biases by introducing an extra input to each
unit which always has a value of 1. The weight on this extra
input is called the bias and is equivalent to a threshold of the
opposite sign. It can be treated just like the other weights.
A unit has a real-valued output, y;, which is a non-linear
function of its total input
1

T 14e7™

Y (2)

©1986 Nature Publishing Group

The Perceptron

weights

sign function
(Heaviside step function)

@— Y output

Inputs

Aside: Inspiration from Biology

impulses carried
toward cell body

branches

dendrites% V/ p of axon
L A
=< e axon
nucleus @ E: a><_c_>2__:__:_ —‘f'é“; terminals
Yo/ A '\ impulses carried
away from cell body
cell body

L0 wy

*@® synapse
axon from a neuron
WoI

cell body

f (Zw,-a:,- + b)

>
output axon

f

activation

Wo s function

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Neural nets/perceptrons are loosely inspired by
biology.

But they certainly are not a model of how the brain
works, or even how neurons work.

1: function PERCEPTRON ALGORITHM
2: w(o) — 0

3: fort=1,...,7T do

4 RECEIVE(2®) 2con wosnmeco

5 9 = Slgn(<w<t y w“)>)
6: RECEIVE(y?) ye{1,-1}

7: wy) =wy 4y zy) - 1y® # §O)

RECEIVE(z(%)

9 = sign((w(H), m(t)>)
RECEIVE(y")

WP = 4y 10 £)

initialized to O

‘ RECEIVE(z®) '

9 = sign((w(“),m(f)))
RECEIVE(y?)

WP = 4y 10 £)

e oObservation (1,-1)

RECEIVE(z(")

(w(t—l) ’ m(t))

RECEIVE(y*)

’U)S) _ ’LU,E:_

Y + Y - :l’:g) : l[y(t) + @(t)]

e observation (1,-1)

Q_Sf) = Sign((w(tl)} m(ﬁ)))
=1

RECEIVE(z®)

<w(t_1) ; m(t)))

® observation (1,-1)
label -1

RECEIVE(z®)

9 = mgn((w(“),m(t)))

RECEIVE(y?)

t) _ , (t—

W~ = Wy

Uty -an - 1ly® # 9]

W = w1y 0 1y £ §0)

® observation (1,-1)
label -1

RECEIVE(z®)

9 = mgn((w(“),m(t)))

RECEIVE(y?)

no match!

W = w1y 0 150 £ §0)

(-1,1) (0,0) -1 (1,-1) 1

® observation (1,-1)
label -1

RECEIVE(z(%)

9 = sign((w(H), m(t)>)
RECEIVE(y")

W = wlf™ 4y 1y £ 50

(-1,1)

RECEIVE(z®)
observation (-1,1)

RECEIVE(z(")

7P = Sign((fw(tl), mm))

RECEIVEW) ’QS) = Sign((w(tl), az(t)>)
wy) =wy Y 4y o) 1y £ §O) . CRINENCR)
(1.1)

observation (-1,1)

RECEIVE(z(")

30 = sign (wD), mm))

) ’QS) = Sign((w(tl), az(t)>)
wy) =wy Y 4y o) 1y £ §O) . CRINENCR)
(1.1)

observation (-1,1)
label +1

RECEIVE(z(%)

A1) _ (t—1) (t)
Ua Slgn((‘w X)) update w

match!
RECEIVE(y") wg) _ 'wg_l) - :ES) _ l[y(t) " Q(t)]
wl = w4y, -z L[y #£ §®)] (-1,1) 1,1) 1 (-1,1) 0

observation (-1,1)
label +1 o

update w

[: RECEIVE(z®) ' -

9 = sign((w(“),m(f)))
RECEIVE(y?)

WP = 4y 10 £)

RECEIVE(z®)

9 = sign((w(“),m(f)))
RECEIVE(y?)

Cwi =wi) gy wy) - 1y® # §O)

RECEIVE(z®)

9 = sign((w(“),m(f)))

RECEIVE(y?)

Cwi =wi) gy wy) - 1y® # §O)

update w

[: RECEIVE(z®) '

9 = sign((w(“),m(f)))
RECEIVE(y?)

WP = 4y 10 £)

RECEIVE(z®)

9 = sign((w(“),m(f)))
RECEIVE(y?)

Cwi =wi) gy wy) - 1y® # §O)

RECEIVE(z®)

9 = sign((w(“),m(f)))

RECEIVE(y?)

Cwi =wi) gy wy) - 1y® # §O)

repeat ...

The Perceptron

weights

sign function
(e.g., step,sigmoid, Tanh, ReLU)

@— Y output

Inputs

Another way to draw it...

weights a — W T
1 (1) Combine the sum and ; o
activation function
y = f(a)
W2
w
iInputs @ 3 | @ f Y output

WN Activation Function

(e.g., Sigmoid function of weighted sum)

(2) suppress the bias
term (less clutter) ry =1

wN —

Programming the 'forward pass'

Activation function (sigmoid, logistic function)

float f(float a)

{
return 1.0 / (1.0+ exp(-a));

@ w3 dEY/ f Y output

Perceptron function (logistic regression)

float perceptron (vector<float> x, vector<float> w)

{
float a = dot(x,w);
return f(a);

Neural networks

Connect a bunch of perceptrons together ...

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

\
S

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

S
<X

C
S

How many perceptrons in this neural network?

O

Q\ IAQ /Q
X

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

7

‘one perceptron’

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

‘two perceptrons’

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

‘three perceptrons’

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

‘four perceptrons’

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

7

five perceptrons’

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

% 'SiX perceptrons’

Some terminology...

‘input’ layer

...also called a Multi-layer Perceptron (MLP)

Some terminology...

‘hidden’ layer
‘input’ layer

\

N
§Y

O IAQ/Q
K
[efeRehe)
V“Y
O O

...also called a Multi-layer Perceptron (MLP)

Some terminology...

‘hidden’ layer
‘input’ layer
‘output’ layer

F -
{
ik
.I;,-'
" - - —— #.-: 4

Q\ IAQ /Q
X
OROROR®

X

...also called a Multi-layer Perceptron (MLP)

this layeris a
fully connected layer’)
£d

%
S
O O

X

O O O
% {‘\
[JRK

all pairwise neurons between layers are connected

Q\ IAQ /@
X

OROROR®
BN

SO IS this

all pairwise neurons between layers are connected

O Oys

How many neurons (perceptrons)?

How many weights (edges)?

S
<X

C
S

How many learnable parameters total?

O

Q\ IAQ /@
X

How many neurons (perceptrons)? 4+2=0

How many weights (edges)?

How many learnable parameters total?

How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

<
o,

4+2=6

(3x4)+ (4x2

How many neurons (perceptrons)? 4+2=0

How many weights (edges)? (3x4)+(4x2)=20

O
®

O

@
(< O

How many learnable parameters total? 20+4+2=20

bias terms

performance usually tops out at 2-3 layers,
deeper networks don't really improve performance...

...with the exception of convolutional networks for images

Tralning perceptrons

Let's start easy

world's smallest perceptron!

Yy =wr
What does this look like?

world's smallest perceptron!

Y = W

(a.k.a. line equation, linear regression)

Learning a Perceptron

Given a set of samples and a Perceptron

{mi: y’a}
y = fper(z; W)

Estimate the parameters of the Perceptron

W

Given training data:

T Y
10 | 10.1
2 1.9
3.0 | 3.4
1 1.1

What do you think the weight parameter Is?

Y = W

Given training data:

T Y
10 | 10.1
2 1.9
3.0 | 3.4
1 1.1

What do you think the weight parameter is?
Yy = wWx

not so obvious as the network gets more complicated so we use ...

An Incremental Learning Strategy

(gradient descent)

Given several examples

{($1:y1): (EZ;UZ): R (mN:yN)}

and a perceptron

Py

Y = WI

An Incremental Learning Strategy

(gradient descent)

Given several examples

{($1:y1): (EZ;UZ): R (mN:yN)}

and a perceptron

Py

Y = WI

Modify weight W such that g gets ‘closer’ to Y

An Incremental Learning Strategy

(gradient descent)

Given several examples

{($1:y1): (EZ;UZ): R (mN:yN)}

and a perceptron

Py

Y = WI

Modify weight W such that g gets ‘closer’ to Y
A

i \ /

perceptron perceptron true
parameter output label

An Incremental Learning Strategy

(gradient descent)

Given several examples

{($1: yl): ($2: y?): R ($N: yN)}

and a perceptron

Py

Y = WI

Modify weight W such that ?;! gets ‘closer’ to Y
A

i S —)

perceptron perceptron what does true
parameter output this mean? label

Before diving into gradient descent, we need to understand ...

Loss Function
defines what is means to be
close to the true solution

YOU get to chose the loss function!

(some are better than others depending on what you want to do)

Squared Error (L2)

(a popular loss function) ((why?))

L1 Loss

L2 LOSS

LG,y) = (J—y)°

Zero-One

((7,y) =1]

0SS

N
|

iInge Loss

((9,y) = max(0,1 —y - §)

back to the...

World’'s Smallest Perceptron!

Y = W

(a.k.a. line equation, linear regression)

function of ONE parameter!

Learning a Perceptron

Given a set of samples and a Perceptron

{%'a yi}

y = fper(z; W)
’.

what is this -~
activation function?

Estimate the parameter of the Perceptron

W

Learning a Perceptron

Given a set of samples and a Perceptron

{mi: y’a}
Yy = fPEI;(fL‘ETU)

what is this -~

activation function? ~ "mear function: f(z) = wr

Estimate the parameter of the Perceptron

W

Learning Strategy

(gradient descent)

Given several examples

{($1: yl): ($2: y?): R ($N: yN)}

and a perceptron

Py

Y = WI

Modify weight W such that ?;! gets ‘closer’ to Y
A

i \ /

perceptron perceptron true
parameter output label

Let’'s demystity this process first...

Code to train your perceptron:

Let’'s demystity this process first...

Code to train your perceptron:

for n=1...N
w=w + (Yn — §)Ts;

just one line of code!

Now where does this come from?

GGradient descent

(partial) derivatives tell us how much
one variable affects another

Two ways to think about them:

KNnobs on a machine

Slope of a function

1. Slope of a function:

O0f(xz) Of(x)

0z Oy

describes the slope around a
point

2. Knobs on a machine:

descrives howeach Of(z) Of(z) Of(x)

knob’ affects the output — Gqpy, Owo ows

small change in parameter Aw; P

output will change by

output

0f(2) Ao

Wy

Gradient descent:

fixed-point on a fu
move In the di
opposite of the g

NCt

eC

radl

slven a

on,

1on

ent

Gradient descent:

-y - AN ,v‘. 7 : n - J
- - |'. ’
1
4 e
pw AWSS 3 TS e .
- ~ T e R .
" i e N A ‘c‘ .
e .
e T e N

Backpropagation

back to the...

World’'s Smallest Perceptron!

Y = W

(a.k.a. line equation, linear regression)

function of ONE parameter!

Training the world’s smallest perceptron

This is just gradient
fﬁr n=1...N descent, that means. ..
W =w (yﬂ — y)$i,§

& this should be the

gradient of the loss
function

Now where does this come from?

dL

—— ...Is the rate at which this will change...

dw
L=>(y—9) (B

2

the loss function

... per unit change of this

y = @wy

the weight parameter

Let’s compute the derivative...

Compute the derivative

iwood(1,
@—@{g(y—m}

| |
| |
—~~ o~
Ny Ny
| |
N RN
S
&~
|
<
S

just shorthand

hat means the weight update for gradient descent is:

w = U — V’u} move in direction of negative gradient

=w+ (y —)z

Gradient Descent (world’s smallest perceptron)

For each sample

{ﬂ?z‘: ?Jz'}

1. Predict

a. Forward pass Uy = wx;

b. Compute Loss L; = l(yz — ?3)2

2
2. Update
. dLl; A
a.Back Propagation = —(y; — 9)x; = Vw
()

b. Gradient update w=w — Vw

Training the world’s smallest perceptron

for n=1...N

w=w+ (Yn — §)Ti;

world’s (second) smallest
perceptron!

function of two parameters!

Gradient Descent
For each sample {$hzﬁ}
1. Predict
a. Forward pass

b Compute 1,0S S we just need to compute partial
. derivatives for this network

a.Back Propagation

b.Gradient update

Derivative computation

=8{1(y—:¢7)2ﬁ> oL _
owi | 2) Owo

= —(y—ﬂ)aa—i =
= —(y — Q)a%ﬁimi =
= —(y—?))a;”lfl =

—(y — 9)z1 = Vuy =

0 [1 D
%4 5(’!!—’9) }

N, h ag
—(y—y)a—w

£ 0) Wi,
—(y—19)

81{}1

Owox
—(y — §)

8’11}2
—(y — 9)z2 = Vwy

Why do we have partial derivatives now?

Derivative computation

oL _ o [1 _»-~)2“"> %_ﬂﬁ(_5)?
6w1 N 6w1 2 Y Y) 811;2 N 8w2 u2 J J
97 99
= —(y :u)aw1 = —(y y)aw2
B (0D wiT; L0 Wiz
— _(y — y) awl — _(y _) awl
- . Owi B . Owa T2
=—(y—1) Yw0n = —(y—19) D0,
= —(y — §)z1 = Vun = —(y — §)z2 = Vws

Gradient Update
wo = W — NVwy

Gradient Descent
For each sample {$hiﬁ}
1. Predict

a.Forward pass U= fvr(zi0)

1 . |
_ A (side computation to track loss. not
b . ComPUte 1L.oss L"‘l — 5(?}1 T y) nee%edforbackprop)
two lines now
2. Update Vwy; = —(ys —)1

| Vwy; = —(y; — §) T2
a.Back Propagation
b. Gradient update -

(adjustable iefi—zy

We haven’t seen a lot of ‘propagation’ yet
because our perceptrons only had one layer...

multi-layer perceptron

function of FOUR parameters and FOUR layers!

sum activation activation activation

input weight weight weight

Tr — W — — W9 I— w3 —

Input hidden hidden output
layer 1 bl layer 2 layer 3 layer 4

sum

hidden
layer 2

activation

hidden
layer 3

weight

activation

output
layer 4

sum

hidden

activation

hidden
layer 3

weight

activation

output
layer 4

,fr’w .)
& sum activation

activation
input weight weight weight
r — Wi w9 w3 —
input Thidden . hidden output
layer 1 bl layer 2 layer 3 layer 4

“Thidden
bl layer 2

ﬂ"w . .
& sum activation

weight

Wwo

~hidden

layer 3

activation

output
layer 4

sum activation

input weight weight

r — Wi — W2
Input hidden - hidden S |
layer 1 bl layer 2 layer 3 layer 4

a3 = w3 - fa(wg - fr(wy -z + b1))

a3 = w3 - fa(wg - fr(wy -z + b1))

a3 = w3 - fa(we - f1(wr -z +b1))
y = fa(ws - fa(ws - fi(w1-z+b1)))

Entire network can be written out as one long equation

y = fa(ws - fa(wz - fi(w1-z+b1)))

We need to train the network:
What is known? What is unknown?

Entire network can be written out as a long equation

y = fa(ws -+ fo(wg - f1(wy -2+ b1)))

\\ MOWn =

We need to train the network:

What i1s known? What is unknown?

Entire network can be written out as a long equation

y = fa(ws - fa(wz - fi(w1-z+b1)))

AR OA A A A
/\\\\\ k /
activation function - v N
- unknown

sometimes has
parameters

We need to train the network:
What is known? What is unknown?

Learning an MLP

Given a set of samples and a MLP
{ﬂjiu yt}
y = fmrp(z;0)

Estimate the parameters of the MLP

0 =1{f w,b}

Gradient Descent
For each random sample {x;,v;}
1. Predict
a. Forward pass § = fmrp(xs; 0)
b. Compute Loss

2. Update

oL
a.Back Propagation @ a6

vector of parameter partial derivatives

b. Gradient update 0« 0 —nV0

vector of parameter update equations

S0 we need to compute the partial derivatives

oL 0L 0L 0L OL|
89 N _a’w'g, é?wg 611}1 86_

Remember,

oL

Partial derivative —— describes...
EaTiil

affect...

" (loss layer)

S0, how do you compute it?

THE CHAIN RULE

According to the chain rule...

8_L L oL 8f3 8a3
Ows Ofs Oas Ows

Intuitively, the effect of weight on loss function : —SL
w3
n-c-‘—’/—-pté_—]
rest of the network = = = f2 —_— ’LU3 - y L(y! g)
v deps on \/
depends on af?, depends on
das dag OL

Ows a7

rest of the network f2 — wB _, g .[/(‘;yj g)

8_L o oL 8f3 8(1,3
811}3 B a_fg 8&33 8w3

Chain Rule!

rest of the network f2 — wB _, g .[/(‘;yj g)

oL o oL 8f3 8&3
3—% - df3 0az Ows
~ afg 8.{13
= -1y —Y) Das Doe .
Just the partial

'r—
derivative of L2 loss
.1.1-*"""'9#;:”.

rest of the network f2 — wB _, g .[/(‘;yj g)

oL o OL 8f3 8&3

M B 8f3 80}3 8’11}3 /—\
df3 daz

= —n(y —9) Das Doe N

Let’s use a Sigmoid function

ds(xz)
) — (@)1 - s(@)

rest of the network f2 — wB _, g .[/(‘;yj g)

oL o oL 8f3 8(1,3

% N 8f3 80}3 8’11}3 /—\
df3 das

= —n(y — y) AN

8‘&)3
Let’s use a Sigmoid function

8&3
= —n(y —9)f3(1 - fS) 45(2) _ ()1 - s())

dx

rest of the network f2 — ’u}B _, g ‘[/(:yj g)

oL o oL 6f3 6{13
Ows Ofs Oaz Ows

. 0f3 Oas

B _n(y - y) 8{13 6w3
oa
= —n(y —)fs(l—f3) >

w3

= —n(y — 9)f3(1 — f3)f2

DD

8[: B 8[: 8f3 8(13 a_fg 8(12

Owy Ofs Oas Ofs Oas Ows

oL

8w2

D@y

—

9L 051003 9F» das

8f3 c':?ag Iafz c’:?ag 811}2

already computed.
re-use (propagate)!

A.K.A. BACKPROPAGATION

The chain rule says...

depends on

depends on depends on depends on depends on depends on

E) depends on
1

8L o 8L 8f3 8&,3 8f2 8612 8f1 8&31
ow, 0f3 Oasg Ofs Oas 0f1 Oar Ow,

The chain rule says...

depends on

depends on depeﬂds on depends on depends on depends on

E) depends on
1

OL |OL Ofs Oas Ofs
Owi |0f3 Oag Of2 Oas

already computed.
re-use (propagate)!

80‘,2 8f1 8@1
8f1 8@1 8w1

OL [OL 0fs|das

Ows <T 0 f3 Oasz|0ws

AL > (IL dfs)0as Of2 Das

8’&)2 . 8f3 8(13 8f2 8(1,2 a‘u}g

AL _IL 9fs daz Ofs Das Ofy day

8w1 - 8f3 8a3 8f2 8ag 8f1 8@1 8w1
% B 8£ 8f3 &13 8f2 8@2 8]”1 8(1,1
(% - 8f3 8.{13 8f2 8&2 8f1 8(1,1 (%

OL OL fs das

Ows OFfs Oaz Ows
0L [OL Ofs Oas 0f2|0as

an (: O fs Oas Ofs Oas Pws
- oL 3f3 8{13 8]"'2 a9 8f1 8{11
8w1 . 8f3 8a3 8f2 8ag l@fl 8@1 8w1
OL OL Ofs Oaz 0f3 ay dfy Bay

b~ Ofs0az Ofy Oay OF, Oay Ob

OL AL Ofs das

3—1% B 0f3 Oasz Ows

9L OL Ofs das Ofs das

Ows Ofs daz dfs Dag dws

oL oL 0fs Oas 0fy Oag 0f1 Daq

Ow; ,|dfs Baz dfz Baz Of1 Oa gﬂh
OL 3 vagz U jz 0ag 1 vaq

b | Ofs Oaz Ofy Bay OFf; Oay \ab

Gradient Descent
For each example sample
1. Predict
a. Forward pass
b. Compute Loss
2. Update

a.Back Propagation

b. Gradient update

{%'a yi}

y = fmp(zs;0)
L;

0L 0L 0f3 Oas

8?1)3 N 8f3 8(13 8'11)3

OL OL Of3 daz Ofy Oas

811)2 B 8f3 8@3 8f2 8@2 8'102

OL OL 0f; 0as 0f; Oas 0f Oay

8101 B 8f3 8@3 8f2 8@2 8f1 3&1 8’101
oL 0L 0f3 daz Of; Oas Of1 day
Ob - 8f3 8&3 8f2 8@2 8f1 8@1 Ob

w3 = w3 — NVWs

wo = w2 — Vw2

w1 = w; —NVw
b=b—nVb

Gradient Descent
For each example sample
1. Predict
a. Forward pass
b. Compute Loss
2. Update

a.Back Propagation

b. Gradient update

{ﬂ?z‘: ?Jz'}

= fmrp(Zi; 0)
L

oL

96

vector of parameter partial derivatives

9<—9—|—ng—§

vector of parameter update equations

Stochastic gradient
descent

What we are truly minimizing:

N
mein Z Ly, fmrp(x;))
i=1

The gradient Is:

What we are truly minimizing:

N
mein Z Ly, fmrp(x;))
i=1

The gradient Is:

N

z OL(Yi, furp (X))
00

=1

What we use for gradient update Is:

What we are truly minimizing:

N
mein Z Ly, fmrp(x;))
i=1

The gradient Is:

N

z OL(Yi, furp (X))
00

=1

What we use for gradient update Is:

OL(Yi, fmrp(Xi))
00

for some i

Stochastic Gradient Descent

For each example sample {mhgﬂ}

1. Predict
a.Forward pass = fmre(zs; 0)
b. Compute Loss L
2. Update
oL
a.Back Propagation 90
oL
, 0« 0+n_-
b. Gradient update 06

vector of parameter update equations

How do we select which sample?

How do we select which sample?
» Select randomly!

Do we need to use only one sample?

How do we select which sample?
» Select randomly!
Do we need to use only one sample?

* You can use a minibatch of size B < N.

Why not do gradient descent with all samples?

How do we select which sample?
» Select randomly!
Do we need to use only one sample?

* You can use a minibatch of size B < N.

Why not do gradient descent with all samples?
* |t's very expensive when N is large (big data).

Do | lose anything by using stochastic GD?

How do we select which sample?
» Select randomly!
Do we need to use only one sample?

* You can use a minibatch of size B < N.

Why not do gradient descent with all samples?
* |t's very expensive when N is large (big data).
Do | lose anything by using stochastic GD?

* Same convergence guarantees and complexity!
» Better generalization.

References

Basic reading: No standard textbooks yet! Some good resources:
« https://sites.google.com/site/deeplearningsummerschool/

e http://www.deeplearningbook.org/
o http://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf

https://sites.google.com/site/deeplearningsummerschool/
http://www.deeplearningbook.org/
http://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf

