Optical flow

http://www.cs.cmu.edu/~16385/

16-385 Computer Vision Spring 2019, Lecture 21

Course announcements

- Homework 6 has been posted and is due on April 24th.
 - Any questions about the homework?
 - How many of you have looked at/started/finished homework 6?
- Wednesday's office hours will be covered by Yannis at the graphics lounge.

Overview of today's lecture

- Quick intro to vision for video.
- Optical flow.
- Constant flow.
- Horn-Schunck flow.

Slide credits

Most of these slides were adapted from:

• Kris Kitani (16-385, Spring 2017).

Course overview

1. Image processing.

Lectures 1 – 7 See also 18-793: Image and Video Processing

2. Geometry-based vision.

Lectures 7 – 12 See also 16-822: Geometry-based Methods in Vision

3. Physics-based vision.

 Lectures 13 – 16
See also 16-823: Physics-based Methods in Vision See also 15-463: Computational Photography

4. Semantic vision.

Lectures 17 – 21 See also 16-824: Vision Learning and Recognition

5. Dealing with motion.

We are starting this part now

Computer vision for video

Optical Flow

Optical flow used for feature tracking on a drone

optical flow used for motion estimation in visual odometry

It was captured in a motion capture system, which is reason for the flickering lights. 00:00:08.000

Lucas-Kanade (Forward additive)

Baker-Matthews (Inverse Compositional)

Image Alignment

KLT

Mean shift

Kalman Filtering

SLAM

Tracking in Video

Optical flow

Optical Flow

Problem Definition

Given two consecutive image frames, estimate the motion of each pixel

Assumptions

Brightness constancy

Small motion

Optical Flow

(Problem definition)

How is this different from estimating a 2D transform?

Key Assumptions

(unique to optical flow)

Color Constancy

(Brightness constancy for intensity images)

Implication: allows for pixel to pixel comparison (not image features)

Small Motion

(pixels only move a little bit)

Implication: linearization of the brightness constancy constraint

Approach

Look for nearby pixels with the same color (small motion) (color constancy)

Brightness constancy

Scene point moving through image sequence

Brightness constancy

Scene point moving through image sequence

Brightness constancy

Scene point moving through image sequence

Assumption: Brightness of the point will remain the same

Brightness constancy

Scene point moving through image sequence

Assumption: Brightness of the point will remain the same

$$I(x(t), y(t), t) = C$$

constant

Assumption 2 Small motion

I(x, y, t)

 $I(x,y,t+\delta t)$

Assumption 2 Small motion

Assumption 2 Small motion

These assumptions yield the ...

Equation is not obvious. Where does this come from?

 $I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$

For small space-time step, brightness of a point is the same

 $I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$

For small space-time step, brightness of a point is the same

Insight:

If the time step is really small, we can *linearize* the intensity function

 $I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) - f_y(a,b)(y-b)$$

$$I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$$

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) - f_y(a,b)(y-b)$$

$$I(x,y,t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = I(x,y,t) \quad \begin{array}{l} \text{assuming small} \\ \text{motion} \end{array}$$

 $I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) - f_y(a,b)(y-b)$$

partial derivative

$$I(x, y, t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = I(x, y, t) \quad \begin{array}{l} \text{assuming small} \\ \text{motion} \end{array}$$

cancel terms

$$I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$$

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) - f_y(a,b)(y-b)$$

$$\begin{split} I(x,y,t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t &= I(x,y,t) \quad \begin{array}{l} \text{assuming small} \\ \text{motion} \end{array} \\ \\ \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t &= 0 \quad \text{cancel terms} \end{split}$$

$$I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$$

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) - f_y(a,b)(y-b)$$

$$\begin{split} I(x,y,t) &+ \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = I(x,y,t) & \text{assuming small} \\ &\frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = 0 & \text{divide by } \delta t \\ & \text{take limit } \delta t \to 0 \end{split}$$

$$I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$$

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) - f_y(a,b)(y-b)$$

$$\begin{split} I(x,y,t) &+ \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = I(x,y,t) & \text{assuming small} \\ &\frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = 0 & \text{divide by } \delta t \\ &\text{take limit } \delta t \to 0 \\ &\frac{\partial I}{\partial x} \frac{dx}{dt} + \frac{\partial I}{\partial y} \frac{dy}{dt} + \frac{\partial I}{\partial t} = 0 \end{split}$$

 $I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) - f_y(a,b)(y-b)$$

$$\begin{split} I(x,y,t) &+ \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = I(x,y,t) & \text{assuming small} \\ &\frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = 0 & \text{divide by } \delta t \\ &\text{take limit } \delta t \to 0 \end{split}$$

$$\frac{\partial I}{\partial x}\frac{dx}{dt} + \frac{\partial I}{\partial y}\frac{dy}{dt} + \frac{\partial I}{\partial t} = 0$$

Brightness Constancy Equation

$$I_x u + I_y v + I_t = 0$$

shorthand notation

(x-flow) (y-flow)

 $abla I^ op oldsymbol{v} + I_t = 0$ vector form

(1 x 2) (2 x 1)

(putting the math aside for a second...)

What do the term of the brightness constancy equation represent?

$I_x u + I_y v + I_t = 0$
(putting the math aside for a second...)

What do the term of the brightness constancy equation represent?

 $I_x u + I_y v + I_t = 0$ Image gradients (at a point p)

(putting the math aside for a second...)

What do the term of the brightness constancy equation represent?

(putting the math aside for a second...)

What do the term of the brightness constancy equation represent?

How do you compute these terms?

 $I_x u + I_y v + I_t = 0$

$$I_x = rac{\partial I}{\partial x} \quad I_y = rac{\partial I}{\partial y}$$
spatial derivative

 $I_x u + I_y v + I_t = 0$

$$I_x = rac{\partial I}{\partial x} \quad I_y = rac{\partial I}{\partial y}$$
spatial derivative

Forward difference Sobel filter Scharr filter

...

 $I_x u + I_y v + I_t = 0$

$$I_x = rac{\partial I}{\partial x} \quad I_y = rac{\partial I}{\partial y}$$
spatial derivative

Forward difference Sobel filter Scharr filter

. . .

 $I_t = \frac{\partial I}{\partial t}$ temporal derivative

 $I_x u + I_y v + I_t = 0$

$$I_x = rac{\partial I}{\partial x} \quad I_y = rac{\partial I}{\partial y}$$
spatial derivative

Forward difference Sobel filter Scharr filter

. . .

 $I_t = \frac{\partial I}{\partial t}$ temporal derivative

frame differencing

Frame differencing

(example of a forward difference)

Example: t3 x 3 patch у↓

 $I_x = \frac{\partial I}{\partial x}$

-101

 $I_y = \frac{\partial I}{\partial y}$

Х

 $I_t = \frac{\partial I}{\partial t}$

Х

у↓

 $I_x u + I_y v + I_t = 0$

Forward difference Sobel filter Scharr filter

. . .

How do you compute this? frame differencing

 $I_x u + I_y v + I_t = 0$

. . .

Sobel filter Scharr filter

We need to solve for this! (this is the unknown in the optical flow problem)

frame differencing

 $I_x u + I_y v + I_t = 0$

Forward difference Sobel filter Scharr filter

. . .

(u, v)

Solution lies on a line

frame differencing

Cannot be found uniquely with a single constraint

The solution cannot be determined uniquely with a single constraint (a single pixel)

$$I_x u + I_y v + I_t = 0$$

How can we use the brightness constancy equation to estimate the optical flow?

We need at least _____ equations to solve for 2 unknowns.

Where do we get more equations (constraints)?

Horn-Schunck Optical Flow (1981)

brightness constancy

small motion

'smooth' flow (flow can vary from pixel to pixel)

global method (dense) Lucas-Kanade Optical Flow (1981)

method of differences

'constant' flow (flow is constant for all pixels)

> local method (sparse)

Constant flow

Where do we get more equations (constraints)?

$I_x u + I_y v + I_t = 0$

Assume that the surrounding patch (say 5x5) has 'constant flow'

Flow is locally smooth

Neighboring pixels have same displacement

Using a 5 x 5 image patch, gives us equations

Flow is locally smooth

Neighboring pixels have same displacement

Using a 5 x 5 image patch, gives us 25 equations

$$I_x(\boldsymbol{p}_1)u + I_y(\boldsymbol{p}_1)v = -I_t(\boldsymbol{p}_1)$$
$$I_x(\boldsymbol{p}_2)u + I_y(\boldsymbol{p}_2)v = -I_t(\boldsymbol{p}_2)$$

 $I_x(\mathbf{p}_{25})u + I_y(\mathbf{p}_{25})v = -I_t(\mathbf{p}_{25})$

Flow is locally smooth

Neighboring pixels have same displacement

Using a 5 x 5 image patch, gives us 25 equations

$$\begin{bmatrix} I_x(\boldsymbol{p}_1) & I_y(\boldsymbol{p}_1) \\ I_x(\boldsymbol{p}_2) & I_y(\boldsymbol{p}_2) \\ \vdots & \vdots \\ I_x(\boldsymbol{p}_{25}) & I_y(\boldsymbol{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\boldsymbol{p}_1) \\ I_t(\boldsymbol{p}_2) \\ \vdots \\ I_t(\boldsymbol{p}_{25}) \end{bmatrix}$$

Matrix form

Flow is locally smooth

Neighboring pixels have same displacement

Using a 5 x 5 image patch, gives us 25 equations

How many equations? How many unknowns? How do we solve this?

Least squares approximation

$$\hat{x} = rgmin_x ||Ax - b||^2$$
 is equivalent to solving $A^{ op}A\hat{x} = A^{ op}b$

Least squares approximation
$$\hat{x} = rgmin_x ||Ax - b||^2$$
 is equivalent to solving $A^{ op}A\hat{x} = A^{ op}b$

To obtain the least squares solution solve:

where the summation is over each pixel p in patch P

$$x = (A^{\top}A)^{-1}A^{\top}b$$

Least squares approximation
$$\hat{x} = rgmin_x ||Ax - b||^2$$
 is equivalent to solving $A^{ op}A\hat{x} = A^{ op}b$

To obtain the least squares solution solve:

where the summation is over each pixel p in patch P

Sometimes called 'Lucas-Kanade Optical Flow'

(can be interpreted to be a special case of the LK method with a translational warp model)

When is this solvable?

 $A^{\top}A\hat{x} = A^{\top}b$

 $A^{\mathsf{T}}A$ should be invertible

 $A^{\mathsf{T}}A$ should not be too small λ_1 and λ_2 should not be too small

 $A^{T}A$ should be well conditioned λ_{1}/λ_{2} should not be too large (λ_{1} =larger eigenvalue)

Where have you seen this before?

$$A^{\top}A = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

Where have you seen this before?

$$\begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

Harris Corner Detector!

Implications

- Corners are when $\lambda 1$, $\lambda 2$ are big; this is also when Lucas-Kanade optical flow works best
- Corners are regions with two different directions of gradient (at least)
- Corners are good places to compute flow!

What happens when you have no 'corners'?

You want to compute optical flow. What happens if the image patch contains only a line?

Barber's pole illusion

Barber's pole illusion

Barber's pole illusion

Aperture Problem

In which direction is the line moving?

Aperture Problem

In which direction is the line moving?

Want patches with different gradients to the avoid aperture problem

Want patches with different gradients to the avoid aperture problem

$$I_x u + I_y v + I_t = 0$$

Compute gradients

Solution:

We recover the v of the optical flow but not the u. *This is the aperture problem.*

Horn-Schunck optical flow

Horn-Schunck Optical Flow (1981)

brightness constancy

small motion

'smooth' flow (flow can vary from pixel to pixel)

global method (dense) Lucas-Kanade Optical Flow (1981)

method of differences

'constant' flow (flow is constant for all pixels)

> local method (sparse)

Smoothness

most objects in the world are rigid or deform elastically moving together coherently

we expect optical flow fields to be smooth

Enforce brightness constancy

Enforce smooth flow field

to compute optical flow

Enforce smooth flow field

to compute optical flow

Enforce brightness constancy

$$I_x u + I_y v + I_t = 0$$

For every pixel,
$$\min_{u,v} \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2$$

Enforce brightness constancy

$$I_x u + I_y v + I_t = 0$$

For every pixel,

$$\min_{u,v} \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2$$

$$\underset{\text{lazy notation for } I_x(i,j)}{\text{lazy notation for } I_x(i,j)}$$

Enforce brightness constancy

to compute optical flow

Enforce smooth flow field

u-component of flow

Which flow field optimizes the objective? $\min_{u}(u_{i,j} - u_{i+1,j})^2$

Which flow field optimizes the objective? $\min_{u}(u_{i,j} - u_{i+1,j})^2$

big

small

Enforce brightness constancy

Enforce smooth flow field

to compute optical flow

bringing it all together...

Horn-Schunck optical flow

 $\min_{\boldsymbol{u},\boldsymbol{v}} \sum_{i,i} \left\{ E_s(i,j) + \lambda E_d(i,j) \right\}$

HS optical flow objective function

Brightness constancy

$$E_d(i,j) = \left[I_x u_{ij} + I_y v_{ij} + I_t\right]^2$$

Smoothness

$$E_s(i,j) = \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right]$$

How do we solve this minimization problem?

 $\min_{\boldsymbol{u},\boldsymbol{v}} \sum_{i,j} \left\{ E_s(i,j) + \lambda E_d(i,j) \right\}$

How do we solve this minimization problem?

 $\min_{\boldsymbol{u},\boldsymbol{v}}\sum_{i,j}\left\{E_s(i,j)+\lambda E_d(i,j)\right\}$

Compute partial derivative, derive update equations (gradient decent!)

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right]$$
smoothness term brightness constancy

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

it's not so bad...

how many u terms depend on k and I?

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

it's not so bad...

 $\frac{\partial E}{\partial u_{kl}} =$

how many u terms depend on k and I?

 $\ensuremath{\textbf{FOUR}}$ from smoothness

 $\ensuremath{\mathsf{ONE}}$ from brightness constancy

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

it's not so bad...

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$

how many u terms depend on k and I?

FOUR from smoothness

 $\ensuremath{\mathsf{ONE}}$ from brightness constancy

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$

$$\frac{\partial E}{\partial v_{kl}} = 2(v_{kl} - \bar{v}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_y$$

short hand for
$$ar{u}_{ij} = rac{1}{4}iggl\{u_{i+1,j}+u_{i-1,j}+u_{i,j+1}+u_{i,j-1}iggr\}$$

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$
$$\frac{\partial E}{\partial v_{kl}} = 2(v_{kl} - \bar{v}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_y$$

Where are the extrema of E?

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$
$$\frac{\partial E}{\partial v_{kl}} = 2(v_{kl} - \bar{v}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_y$$

Where are the extrema of E?

(set derivatives to zero and solve for unknowns u and v)

$$(1 + \lambda I_x^2)u_{kl} + \lambda I_x I_y v_{kl} = \bar{u}_{kl} - \lambda I_x I_t$$
$$\lambda I_x I_y u_{kl} + (1 + \lambda I_y^2)v_{kl} = \bar{v}_{kl} - \lambda I_y I_t$$

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$
$$\frac{\partial E}{\partial v_{kl}} = 2(v_{kl} - \bar{v}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_y$$

Where are the extrema of E?

(set derivatives to zero and solve for unknowns u and v)

$$(1 + \lambda I_x^2)u_{kl} + \lambda I_x I_y v_{kl} = \bar{u}_{kl} - \lambda I_x I_t$$
$$\lambda I_x I_y u_{kl} + (1 + \lambda I_y^2)v_{kl} = \bar{v}_{kl} - \lambda I_y I_t$$

this is a linear system $\mathbf{A} \boldsymbol{x} = \boldsymbol{b}$ how do you solve this?

ok, take a step back, why are we doing all this math?

We are solving for the optical flow (u,v) given two constraints

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

smoothness

brightness constancy

We need the math to minimize this (back to the math)

Partial derivatives of Horn-Schunck objective function E:

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$

$$\frac{\partial E}{\partial v_{kl}} = 2(v_{kl} - \bar{v}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_y$$

Where are the extrema of E?

(set derivatives to zero and solve for unknowns u and v)

$$(1 + \lambda I_x^2)u_{kl} + \lambda I_x I_y v_{kl} = \bar{u}_{kl} - \lambda I_x I_t$$
$$\lambda I_x I_y u_{kl} + (1 + \lambda I_y^2)v_{kl} = \bar{v}_{kl} - \lambda I_y I_t$$

 $\mathbf{A} \boldsymbol{x} = \boldsymbol{b}$ how do you solve this?

$$(1 + \lambda I_x^2)u_{kl} + \lambda I_x I_y v_{kl} = \bar{u}_{kl} - \lambda I_x I_t$$
$$\lambda I_x I_y u_{kl} + (1 + \lambda I_y^2)v_{kl} = \bar{v}_{kl} - \lambda I_y I_t$$

$$\begin{array}{ll} \mathsf{Recall} & \boldsymbol{x} = \mathbf{A}^{-1}\boldsymbol{b} = \frac{\mathrm{adj}\mathbf{A}}{\det\mathbf{A}}\boldsymbol{b} \end{array}$$
$$(1 + \lambda I_x^2)u_{kl} + \lambda I_x I_y v_{kl} = \bar{u}_{kl} - \lambda I_x I_t$$
$$\lambda I_x I_y u_{kl} + (1 + \lambda I_y^2)v_{kl} = \bar{v}_{kl} - \lambda I_y I_t$$

Recall
$$\boldsymbol{x} = \mathbf{A}^{-1}\boldsymbol{b} = \frac{\mathrm{adj}\mathbf{A}}{\mathrm{det}\,\mathbf{A}}\boldsymbol{b}$$

Same as the linear system: $\{1+\lambda(I_x^2+I_y^2)\}u_{kl}=(1+\lambda I_x^2)\bar{u}_{kl}-\lambda I_xI_y\bar{v}_{kl}-\lambda I_xI_t$ (det A)

$$\{1+\lambda(I_x^2+I_y^2)\}v_{kl}=(1+\lambda I_y^2)\bar{v}_{kl}-\lambda I_xI_y\bar{u}_{kl}-\lambda I_yI_t$$
 (det A)

$$\{1+\lambda(I_x^2+I_y^2)\}u_{kl} = (1+\lambda I_x^2)\bar{u}_{kl} - \lambda I_x I_y \bar{v}_{kl} - \lambda I_x I_t$$

$$\{1 + \lambda (I_x^2 + I_y^2)\}v_{kl} = (1 + \lambda I_y^2)\bar{v}_{kl} - \lambda I_x I_y \bar{u}_{kl} - \lambda I_y I_t$$

Rearrange to get update equations:

$$\begin{split} \hat{u}_{kl} &= \bar{u}_{kl} - \frac{I_x \bar{u}_{kl} + I_y \bar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_x \\ & \text{new}_{\text{value}} \quad \text{old}_{\text{average}} \\ \hat{v}_{kl} &= \bar{v}_{kl} - \frac{I_x \bar{u}_{kl} + I_y \bar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_y \end{split}$$

Recall:
$$\min_{\boldsymbol{u},\boldsymbol{v}} \sum_{i,j} \left\{ E_s(i,j) + \lambda E_d(i,j) \right\}$$

When lambda is small (lambda inverse is big)...

$$\begin{split} \hat{u}_{kl} &= \bar{u}_{kl} - \frac{I_x \bar{u}_{kl} + I_y \bar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_x \\ \hat{v}_{\text{value}}^{\text{rew}} &\stackrel{\text{old}}{\text{average}} - \frac{I_x \bar{u}_{kl} + I_y \bar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_y \end{split}$$

Recall:
$$\min_{\boldsymbol{u},\boldsymbol{v}} \sum_{i,j} \left\{ E_s(i,j) + \lambda E_d(i,j) \right\}$$

When lambda is small (lambda inverse is big)...

Recall:
$$\min_{\boldsymbol{u},\boldsymbol{v}} \sum_{i,j} \left\{ E_s(i,j) + \lambda E_d(i,j) \right\}$$

When lambda is small (lambda inverse is big)...

ok, take a step back, why did we do all this math?

We are solving for the optical flow (u,v) given two constraints

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

smoothness

brightness constancy

We needed the math to minimize this (now to the algorithm)

Horn-Schunck Optical Flow Algorithm

- 1. Precompute image gradients I_y I_x
- 2. Precompute temporal gradients $\ I_t$
- 3. Initialize flow field $oldsymbol{u}=oldsymbol{0}$
- 4. While not converged

Compute flow field updates for each pixel:

$$\hat{u}_{kl} = \bar{u}_{kl} - \frac{I_x \bar{u}_{kl} + I_y \bar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_x \qquad \hat{v}_{kl} = \bar{v}_{kl} - \frac{I_x \bar{u}_{kl} + I_y \bar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_y$$

v = 0

Just 8 lines of code!

References

Basic reading:

• Szeliski, Section 8.4.