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• Homework 6 has been posted and is due on April 24th. 
- Any questions about the homework?
- How many of you have looked at/started/finished homework 6?

• Wednesday’s office hours will be covered by Yannis at the graphics lounge.

Course announcements



• Quick intro to vision for video.

• Optical flow.

• Constant flow.

• Horn-Schunck flow.

Overview of today’s lecture



Slide credits

Most of these slides were adapted from:

• Kris Kitani (16-385, Spring 2017).



1. Image processing.

2. Geometry-based vision.

3. Physics-based vision.

4. Semantic vision.

5. Dealing with motion.

Course overview

Lectures 13 – 16

See also 16-823: Physics-based Methods in Vision

See also 15-463: Computational Photography

Lectures 7 – 12

See also 16-822: Geometry-based Methods in Vision

Lectures 1 – 7

See also 18-793: Image and Video Processing

We are starting this part now

Lectures 17 – 21

See also 16-824: Vision Learning and Recognition



Computer vision for video



Optical Flow

Constant Flow Horn-Schunck



Optical flow used for feature tracking on a drone



optical flow used for motion estimation in visual odometry



Image Alignment

Lucas-Kanade

(Forward additive)

Baker-Matthews

(Inverse Compositional)



Tracking in Video

KLT Mean shift

Kalman Filtering SLAM



Optical flow



Optical Flow

Problem Definition

Assumptions

Brightness constancy

Small motion

Given two consecutive image frames, 

estimate the motion of each pixel



Optical Flow
(Problem definition)

Estimate the motion 

(flow) between these two 

consecutive images

How is this different from estimating a 2D transform?



Key Assumptions
(unique to optical flow)

Color Constancy
(Brightness constancy for intensity images)

Small Motion
(pixels only move a little bit)

Implication: allows for pixel to pixel comparison 

(not image features)

Implication: linearization of the brightness 

constancy constraint



Approach

Look for nearby pixels with the same color
(small motion) (color constancy)



Brightness constancy
Scene point moving through image sequence

Assumption 1



Brightness constancy
Scene point moving through image sequence

Assumption 1



Brightness constancy

Assumption:Brightness of the point will remain the same

Scene point moving through image sequence

Assumption 1



Brightness constancy

Assumption:Brightness of the point will remain the same

constant

Scene point moving through image sequence

Assumption 1



Small motion

Assumption 2



Small motion

Assumption 2



Small motion

Optical flow (velocities): Displacement:

Assumption 2



Small motion

Optical flow (velocities): Displacement:

… the brightness between two consecutive image frames 

is the same

For a really small space-time step…

Assumption 2



total derivative partial derivative

Equation is not obvious. Where does this come from?

These assumptions yield the …

Brightness Constancy Equation



For small space-time step, brightness of a point is the same



For small space-time step, brightness of a point is the same

Insight:

If the time step is really small, 

we can linearize the intensity function



Multivariable Taylor Series Expansion
(First order approximation, two variables)



Multivariable Taylor Series Expansion
(First order approximation, two variables)

assuming small 

motion



assuming small 

motion

cancel terms

Multivariable Taylor Series Expansion
(First order approximation, two variables)

fixed point

partial derivative



assuming small 

motion

cancel terms

Multivariable Taylor Series Expansion
(First order approximation, two variables)



assuming small 

motion

divide by 

take limit 

Multivariable Taylor Series Expansion
(First order approximation, two variables)



assuming small 

motion

divide by 

take limit 

Multivariable Taylor Series Expansion
(First order approximation, two variables)



assuming small 

motion

divide by 

take limit 

Brightness Constancy 

Equation

Multivariable Taylor Series Expansion
(First order approximation, two variables)



shorthand notation

vector form

Brightness 

Constancy Equation

(x-flow) (y-flow)

(1 x 2) (2 x 1)



(putting the math aside for a second…)

What do the term of the 

brightness constancy equation represent?



(putting the math aside for a second…)

What do the term of the 

brightness constancy equation represent?

Image gradients
(at a point p)



(putting the math aside for a second…)

What do the term of the 

brightness constancy equation represent?

flow velocities

Image gradients
(at a point p)



(putting the math aside for a second…)

What do the term of the 

brightness constancy equation represent?

flow velocities

temporal gradient

How do you compute these terms?

Image gradients
(at a point p)



spatial derivative

How do you compute …



spatial derivative

Forward difference

Sobel filter

Scharr filter

…

How do you compute …



spatial derivative temporal derivative

Forward difference

Sobel filter

Scharr filter

…

How do you compute …



spatial derivative temporal derivative

Forward difference

Sobel filter

Scharr filter

…

How do you compute …

frame differencing



Frame differencing
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(example of a forward difference)
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Example:
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spatial derivative optical flow

Forward difference

Sobel filter

Scharr filter

…

How do you compute …

temporal derivative

frame differencingHow do you compute this?



spatial derivative optical flow

Forward difference

Sobel filter

Scharr filter

…

How do you compute …

temporal derivative

frame differencingWe need to solve for this!
(this is the unknown in the optical 

flow problem)



spatial derivative optical flow

Forward difference

Sobel filter

Scharr filter

…

Solution lies on a line

Cannot be found uniquely 

with a single constraint 

How do you compute …

temporal derivative

frame differencing



Solution lies on a straight line

The solution cannot be determined uniquely with a 

single constraint (a single pixel)

many combinations of u and v will satisfy the equality



spatial derivative optical flow temporal derivative

How can we use the brightness constancy equation to

estimate the optical flow?



known

unknown

We need at least ____ equations to solve for 2 unknowns.



known

unknown

Where do we get more equations (constraints)?



Horn-Schunck 

Optical Flow (1981)

Lucas-Kanade

Optical Flow (1981)

‘constant’ flow
(flow is constant for all pixels)

‘smooth’ flow
(flow can vary from pixel to pixel)

brightness constancy
method of differences

global method

(dense)

local method

(sparse)

small motion



Constant flow



Where do we get more equations (constraints)?

Assume that the surrounding patch (say 5x5) has 

‘constant flow’



Flow is locally smooth

Neighboring pixels have same displacement

Using a 5 x 5 image patch, gives us 25 equations

Assumptions:



Flow is locally smooth

Neighboring pixels have same displacement

Using a 5 x 5 image patch, gives us 25 equations

Assumptions:



Flow is locally smooth

Neighboring pixels have same displacement

Using a 5 x 5 image patch, gives us 25 equations

Assumptions:

Matrix form



Flow is locally smooth

Neighboring pixels have same displacement

Using a 5 x 5 image patch, gives us 25 equations

How many equations? How many unknowns? How do we solve this?

Assumptions:



Least squares approximation

is equivalent to solving



To obtain the least squares solution solve:

Least squares approximation

is equivalent to solving

where the summation is over each pixel p in patch P



To obtain the least squares solution solve:

Least squares approximation

is equivalent to solving

where the summation is over each pixel p in patch P

Sometimes called ‘Lucas-Kanade Optical Flow’

(can be interpreted to be a special case of the LK method with a translational warp model)



When is this solvable?

ATA should be invertible

ATA should not be too small

ATA should be well conditioned

l
1
and l

2
should not be too small

l
1
/l

2
should not be too large (l

1
=larger eigenvalue)



Where have you seen this before?

=



Where have you seen this before?

Harris Corner Detector!



Implications

• Corners are when λ1, λ2 are big; this is also when 

Lucas-Kanade optical flow works best

• Corners are regions with two different directions of 

gradient (at least)

• Corners are good places to compute flow! 

What happens when you have no ‘corners’?



You want to compute optical flow.

What happens if the image patch contains only a line?



Barber’s pole illusion



Barber’s pole illusion



Barber’s pole illusion



Aperture Problem

In which direction is the line moving?

small visible image 

patch



Aperture Problem

In which direction is the line moving?

small visible image 

patch



Aperture Problem



Aperture Problem



Aperture Problem



Aperture Problem



Want patches with different gradients to 

the avoid aperture problem



Want patches with different gradients to 

the avoid aperture problem



1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

- - - -

- 1 1 1

- 2 2 2

- 3 3 3

- 4 4 4

y

x

y

x

optical flow: (1,1)

H(x,y) = y I(x,y)

We recover the v of the optical flow but not the u. 

This is the aperture problem.

Compute gradients Solution:



Horn-Schunck optical flow



Horn-Schunck 

Optical Flow (1981)

Lucas-Kanade

Optical Flow (1981)

‘constant’ flow
(flow is constant for all pixels)

‘smooth’ flow
(flow can vary from pixel to pixel)

brightness constancy
method of differences

global method

(dense)

local method

(sparse)

small motion



Smoothness

most objects in the world are rigid or 

deform elastically 

moving together coherently

we expect optical flow fields to be smooth



Key idea
(of Horn-Schunck optical flow)

Enforce

brightness constancy

Enforce 

smooth flow field

to compute optical flow



Key idea
(of Horn-Schunck optical flow)

Enforce

brightness constancy

Enforce 

smooth flow field

to compute optical flow



Enforce 

brightness constancy

For every pixel,



For every pixel,

lazy notation for 

Enforce 

brightness constancy



Key idea
(of Horn-Schunck optical flow)

Enforce

brightness constancy

Enforce 

smooth flow field

to compute optical flow



Enforce smooth flow field

u-component of flow



Which flow field optimizes the objective?

?



smallbig

Which flow field optimizes the objective?



Key idea
(of Horn-Schunck optical flow)

Enforce

brightness constancy

Enforce 

smooth flow field

to compute optical flow

bringing it all together…



Horn-Schunck optical flow

smoothness brightness constancy

weight



HS optical flow objective function

Brightness constancy

Smoothness

why not all four neighbors?



How do we solve this 

minimization problem?



Compute partial derivative, derive update equations
(gradient decent!)

How do we solve this 

minimization problem?



Compute the partial derivatives of this huge sum!

smoothness term brightness constancy



Compute the partial derivatives of this huge sum!

it’s not so bad…

how many u terms depend on k and l?



Compute the partial derivatives of this huge sum!

it’s not so bad…

how many u terms depend on k and l?

ONE from brightness constancyFOUR from smoothness



Compute the partial derivatives of this huge sum!

it’s not so bad…

how many u terms depend on k and l?

ONE from brightness constancyFOUR from smoothness



Compute the partial derivatives of this huge sum!

(variable will appear four times in sum)



Compute the partial derivatives of this huge sum!

short hand for 

local average

(variable will appear four times in sum)



Where are the extrema of E?



Where are the extrema of E?

(set derivatives to zero and solve for unknowns u and v)



Where are the extrema of E?

(set derivatives to zero and solve for unknowns u and v)

how do you solve this?this is a linear system



ok, take a step back, why are we doing all this math?



We are solving for the optical flow (u,v) given two 

constraints

smoothness brightness constancy

We need the math to minimize this 

(back to the math)



Where are the extrema of E?

(set derivatives to zero and solve for unknowns u and v)

how do you solve this?

Partial derivatives of Horn-Schunck objective function E:



Recall



Recall

(det A)

Same as the linear system:

(det A)



Rearrange to get update equations:

new 

value

old

average



new 

value

old

average

When lambda is small (lambda inverse is big)…

Recall:



new 

value

old

average

When lambda is small (lambda inverse is big)…

goes to 

zero

goes to 

zero

Recall:



new 

value

old

average

When lambda is small (lambda inverse is big)…

goes to 

zero

goes to 

zero

…we only care about smoothness.

Recall:



ok, take a step back, why did we do all this math?



We are solving for the optical flow (u,v) given two 

constraints

smoothness brightness constancy

We needed the math to minimize this 

(now to the algorithm)



Horn-Schunck 

Optical Flow Algorithm

1. Precompute image gradients

2. Precompute temporal gradients

3. Initialize flow field

4. While not converged

Compute flow field updates for each pixel:

Just 8 lines of code!



References

Basic reading:
• Szeliski, Section 8.4.


