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• Finish temporal models.

• Normalized cuts.

• Boundaries.

• Clustering for segmentation.

Overview of today’s lecture



Slide credits

Most of these slides were adapted from:

• Srinivasa Narasimhan (16-385, Spring 2015).

• James Hays (Brown University).
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Image segmentation by pairwise similarities

• Image = { pixels }

• Segmentation = partition of image into 
segments

• Similarity between pixels i and j

Sij = Sji ≥ 0

• Objective: “similar pixels, with large 
value of Sij, should be in the same 
segment, dissimilar pixels should be 
in different segments”

Sij
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Relational Graphs

◼ G=(V, E, S)

➔ V: each node denotes a pixel

➔ E: each edge denotes a pixel-pixel relationship 

➔ S: each edge weight measures pairwise similarity

◼ Segmentation = node partitioning

➔ break V into disjoint sets V1 , V2
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Weighted graph partitioning

Pixels i I  = vertices of graph G

Edges ij  = pixel pairs with Sij > 0

Similarity matrix S = [ Sij ]

di = Sj Є G Sij degree of I

deg A = Si Є A di degree of A    G

Assoc(A,B) = Si Є A Sj Є B Sij



Sij

i
j

i

A

A
B



© 2004 by Davi Geiger Computer Vision

Cuts in a Graph

• (edge) cut = set of edges whose removal makes a graph disconnected

• weight of a cut:      cut( A, B ) = Si  Є A, Sj Є B Sij =Assoc(A,B)

• the normalized cut

• Normalized Cut criteria: minimum cut(A,Ā)

NCut( A,B ) = cut(A, B)(         +          )
1  

deg A

1  

deg B
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Grouping with Spectral Graph Partitioning

SGP: data structure = a weighted graph, weights describing data affinity

Segmentation is to find a node 
partitioning of a relational graph, with 
minimum total cut-off affinity.

Discriminative models are used to 
evaluate the weights between nodes.

The solution sought is the cuts of the 
minimum energy.
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Matrix representation of the 

graph problem:

1

2

3

4
5

6

7

8

9

0.1

0.1

2

25

2

2

3

7

4 2

1

1

1













































































=

017430000

1

7

4

3

0100

1020

0201

0010

001.00

0000

0000

1.0000

0

0

0

0

0001.0

0000

1.0000

0000

0220

2025

2202

0520

M
affinity matrix



Eigenvector approach to segmentation

Represent a connected component (or cluster C)

By  a weight vector w such that (indicator vector):

wtMw is the association of C because: 

If C is a good cluster, then the average association between features

In C should be large. Therefore, we want:

wtMw is large 

Suggests algorithm:

• Build matrix M

• Find w such that wtMw is maximum.

Problem: w is a binary vector
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Replace binary vector with continuous weight vector. Interpretation:

wi large if i belongs to C.

Problem becomes:

•Find w such that wtMw is maximum 

•Construct the corresponding component C by:

i belongs to C if wi is large.

Problem with scale:

The relative values of the wi’s are important, the total magnitude of w is not.

Normalization:
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Replace binary vector with continuous weight vector. Interpretation:

wi large if i belongs to C.

Problem becomes:

•Find w such that wtMw is maximum 

•Construct the corresponding component C by:

i belongs to C if wi is large.

Problem with scale:

The relative values of the wi’s are important, the total magnitude of w is not.
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Rayleigh’s ratio theorem:

Given a symmetric matrix M, the maximum of the ratio

is obtained for the eigenvector wmax corresponding to the 

largest eigenvalue lmax of M.
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Brightness Image Segmentation
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Brightness Image Segmentation
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Results on color segmentation



Segmentation from boundaries



• All examples from: P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour 
Detection and Hierarchical Image Segmentation. IEEE TPAMI, Vol. 33, No. 5, 
pp. 898-916, May 2011. 

• Complete package: 
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resource
s.html

Prob. of boundary
Intuition: 

• Duality between regions and 

boundaries

• Maybe “easier” to estimate 

boundaries first

• Then use the boundaries to 

generate segmentations at 

different levels of granularity

Fine resolution Coarse resolution



Pb

Finding boundaries
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multiple cues
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gPb (global Pb)

• Idea: We could use the Pb contours to 
generate an affinity matrix and then use Ncuts

• j and i have lower affinity because they cross 
higher Pb values 



gPb (global Pb)

Not good: 

generate 

segmentation from 

the eigenvectors

Good: Combine 

the gradients of 

the eigenvectors!! 



• Final step: Convert closed boundary (UCM = Ultrametric Contour Map)

• Different thresholds on contours yield segmentations at different levels of 
granularity

• Guaranteed to produce a hierarchical segmentation



• Complete package: 

http://www.eecs.berkeley.edu/Research/Project

s/CS/vision/grouping/resources.html

Prob. of boundary
Intuition: 

• Duality between regions and 

boundaries

• Maybe “easier” to estimate 

boundaries first

• Then use the boundaries to 

generate segmentations at 

different levels of granularity

Fine resolution Coarse resolution



Clustering: group together similar points and 
represent them with a single token

Key Challenges:

1) What makes two points/images/patches similar?

2) How do we compute an overall grouping from 
pairwise similarities? 



Why do we cluster?

• Summarizing data
– Look at large amounts of data
– Patch-based compression or denoising
– Represent a large continuous vector with the cluster number

• Counting
– Histograms of texture, color, SIFT vectors

• Segmentation
– Separate the image into different regions

• Prediction
– Images in the same cluster may have the same labels



How do we cluster?

• K-means

– Iteratively re-assign points to the nearest cluster 
center

• Agglomerative clustering

– Start with each point as its own cluster and 
iteratively merge the closest clusters

• Mean-shift clustering

– Estimate modes of pdf



K-means clustering



1. Select initial 

centroids at random
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K-means Clustering

Given k:

1.Select initial centroids at random.

2.Assign each object to the cluster with the nearest 

centroid.

3.Compute each centroid as the mean of the objects 

assigned to it.

4.Repeat previous 2 steps until no change.



K-means: design choices

• Initialization

– Randomly select K points as initial cluster center

– Or greedily choose K points to minimize residual

• Distance measures

– Traditionally Euclidean, could be others

• Optimization

– Will converge to a local minimum

– May want to perform multiple restarts



Image Clusters on intensity Clusters on color

K-means clustering using intensity or color



How to choose the number of clusters?

• Minimum Description Length (MDL) principal for 
model comparison 

• Minimize Schwarz Criterion 

– also called Bayes Information Criteria (BIC)



K-Means pros and cons
• Pros

• Finds cluster centers that minimize 
conditional variance (good 
representation of data)

• Simple and fast*

• Easy to implement

• Cons

• Need to choose K

• Sensitive to outliers

• Prone to local minima

• All clusters have the same parameters 
(e.g., distance measure is non-
adaptive)

• *Can be slow: each iteration is O(KNd) 
for N d-dimensional points

• Usage

• Rarely used for pixel segmentation



Agglomerative clustering
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Agglomerative clustering



Agglomerative clustering

How to define cluster similarity?
- Average distance between points, maximum 

distance, minimum distance

- Distance between means or medoids

How many clusters?
- Clustering creates a dendrogram (a tree)

- Threshold based on max number of clusters 
or based on distance between merges

d
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Conclusions: Agglomerative Clustering

Good
• Simple to implement, widespread application
• Clusters have adaptive shapes
• Provides a hierarchy of clusters

Bad
• May have imbalanced clusters
• Still have to choose number of clusters or 

threshold
• Need to use an “ultrametric” to get a meaningful 

hierarchy



• Versatile technique for clustering-based 
segmentation

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002. 

Mean shift segmentation



Mean shift algorithm

• Try to find modes of this non-parametric 
density



Mean Shift Algorithm

Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm



Mean Shift Algorithm

Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Find the region of 

highest density



Mean Shift Algorithm

Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Pick a point



Mean Shift Algorithm

Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Draw a window



Mean Shift Algorithm

Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Compute the 

(weighted) mean
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Mean Shift Algorithm

Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Shift the window

To understand the theory behind this we need to understand…



• Attraction basin: the region for which all 
trajectories lead to the same mode

• Cluster: all data points in the attraction 
basin of a mode

Slide by Y. Ukrainitz & B. Sarel

Attraction basin



Attraction basin



Mean shift clustering

• The mean shift algorithm seeks modes of the 
given set of points

1. Choose kernel and bandwidth

2. For each point:

a) Center a window on that point

b) Compute the mean of the data in the search window

c) Center the search window at the new mean location

d) Repeat (b,c) until convergence

3. Assign points that lead to nearby modes to the 
same cluster



• Compute features for each pixel (color, gradients, texture, etc)

• Set kernel size for features Kf and position Ks

• Initialize windows at individual pixel locations

• Perform mean shift for each window until convergence

• Merge windows that are within width of Kf and Ks

Segmentation by Mean Shift



http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean shift segmentation results



http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html


Mean-shift: other issues

• Speedups
– Binned estimation
– Fast search of neighbors
– Update each window in each iteration (faster 

convergence)

• Other tricks
– Use kNN to determine window sizes adaptively

• Lots of theoretical support
D. Comaniciu and P. Meer, Mean Shift: A Robust Approach 
toward Feature Space Analysis, PAMI 2002. 



References

Basic reading:
• Szeliski, Sections 5.2, 5.3, 5.4, 5.5.


