Detecting corners

16-385 Computer Vision

Course announcements

- Homework 1 is due on February $11^{\text {th }}$.
- Any questions about the homework?
- How many of you have looked at/started/finished homework 1?
- Office hour changes this and next week:
- Friday's 3-5 pm office hours will be covered by Anshuman.
- Next Monday there are extra office hours 3-5 pm by Yannis.

Overview of today's lecture

Leftover from Lecture 4:

- More on Hough lines.
- Hough circles.

New in lecture 5:

- Why detect corners?
- Visualizing quadratics.
- Harris corner detector.
- Multi-scale detection.
- Multi-scale blob detection.

Slide credits

Most of these slides were adapted from:

- Kris Kitani (15-463, Fall 2016).

Some slides were inspired or taken from:

- Fredo Durand (MIT).
- James Hays (Georgia Tech).

Why detect corners?

Why detect corners?

Image alignment (homography, fundamental matrix)
3D reconstruction
Motion tracking
Object recognition
Indexing and database retrieval
Robot navigation

Planar object instance recognition

Database of planar objects

Instance recognition

3D object recognition

Database of 3D objects

Recognition under occlusion

Location Recognition

Robot Localization

Image matching

NASA Mars Rover images

Where are the corresponding points?

Pick a point in the image.
Find it again in the next image.

What type of feature would you select?

Pick a point in the image.
Find it again in the next image.

What type of feature would you select?

Pick a point in the image.
Find it again in the next image.

What type of feature would you select? a corner

Visualizing quadratics

Equation of a circle

$$
1=x^{2}+y^{2}
$$

Equation of a 'bowl' (paraboloid)

$$
f(x, y)=x^{2}+y^{2}
$$

If you slice the bowl at

$$
f(x, y)=1
$$

what do you get?

Equation of a circle

$$
1=x^{2}+y^{2}
$$

Equation of a 'bowl' (paraboloid)

$$
f(x, y)=x^{2}+y^{2}
$$

If you slice the bowl at

$$
f(x, y)=1
$$

what do you get?

$$
f(x, y)=x^{2}+y^{2}
$$

can be written in matrix form like this...

$$
f(x, y)=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
f(x, y)=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

'sliced at 1'

What happens if you increase coefficient on \boldsymbol{x} ?
$f(x, y)=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
and slice at 1

What happens if you increase coefficient on \boldsymbol{x} ?
$f(x, y)=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
and slice at 1

What happens if you increase coefficient on \boldsymbol{y} ?
$f(x, y)=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
and slice at 1

What happens if you increase coefficient on \boldsymbol{y} ?
$f(x, y)=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
and slice at 1

$$
f(x, y)=x^{2}+y^{2}
$$

can be written in matrix form like this...

$$
f(x, y)=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

What's the shape?
What are the eigenvectors?
What are the eigenvalues?

$$
f(x, y)=x^{2}+y^{2}
$$

can be written in matrix form like this...

$$
f(x, y)=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Result of Singular Value Decomposition (SVD)

Eigenvectors Eigenvalues

Recall:
$\int f(x, y)=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
you can smash this bowl in the \mathbf{y} direction
$\bigcirc f(x, y)=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
you can smash this bowl in the \mathbf{x} direction

$$
\oint f(x, y)=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\mathbf{A}=\left[\begin{array}{ll}
3.25 & 1.30 \\
1.30 & 1.75
\end{array}\right]=\left[\begin{array}{cc}
0.50 & -0.87 \\
-0.87 & -0.50
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{cc}
0.50 & -0.87 \\
-0.87 & -0.50
\end{array}\right]^{T}
$$

Eigenvectors
Eigenvectors

Eigenvalues

$$
\mathbf{A}=\left[\begin{array}{ll}
7.75 & 3.90 \\
3.90 & 3.25
\end{array}\right]=\left[\begin{array}{cc}
0.50 & -0.87 \\
-0.87 & -0.50
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 10
\end{array}\right]\left[\begin{array}{cc}
0.50 & -0.87 \\
-0.87 & -0.50
\end{array}\right]^{T}
$$

Eigenvectors

We will need this to understand the...

Error function for Harris Corners

The surface $E(u, v)$ is locally approximated by a quadratic form

$$
\begin{aligned}
& E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
& M=\sum\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
\end{aligned}
$$

Harris corner detector

How do you find a corner?

How do you find a corner?

[Moravec 1980]

Easily recognized by looking through a small window
Shifting the window should give large change in intensity

Easily recognized by looking through a small window

Shifting the window should give large change in intensity

"flat" region:
no change in all directions

"edge":
no change along the edge direction

"corner":
significant change in all directions

Design a program to detect corners

 (hint: use image gradients)
Finding corners (a.k.a. PCA)

1.Compute image gradients over small region
2. Subtract mean from each image
$I_{x}=\frac{\partial I}{\partial x}$
 gradient
3. Compute the covariance matrix
4.Compute eigenvectors and eigenvalues

$$
\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

5. Use threshold on eigenvalues to detect corners
6. Compute image gradients over a small region (not just a single pixel)

1. Compute image gradients over a small region

(not just a single pixel)

array of x gradients

$$
I_{x}=\frac{\partial I}{\partial x}
$$

array of y gradients

$$
I_{y}=\frac{\partial I}{\partial y}
$$

visualization of gradients

$\xrightarrow[\bullet]{\bullet \bullet \bullet} I_{y}=\frac{\partial I}{\partial y}$

What does the distribution tell you about the region?

distribution reveals edge orientation and magnitude

How do you quantify orientation and magnitude?
2. Subtract the mean from each image gradient

2. Subtract the mean from each image gradient

constant intensity gradient

intensities along the line

2. Subtract the mean from each image gradient

plot of image gradients

2. Subtract the mean from each image gradient

constant intensity gradient

plot of image gradients

data is centered
('DC' offset is removed)
3. Compute the covariance matrix

3. Compute the covariance matrix

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]}
\end{aligned}
$$

Easily recognized by looking through a small window

Shifting the window should give large change in intensity

"flat" region:
no change in all directions

"edge":
no change along the edge direction

"corner":
significant change in all directions

Error function

Change of intensity for the shift $[u, v]$:

$$
E(u, v)=\sum_{\substack{\text { Ery }}} w(x, y)[I(x+u, y+v)-I(x, y)]^{2}
$$

Window function $w(x, y)=$

1 in window, 0 outside

Gaussian

Error function approximation

Change of intensity for the shift $[u, v]$:

$$
E(u, v)=\sum_{x, y} w(x, y)[I(x+u, y+v)-I(x, y)]^{2}
$$

First-order Taylor expansion of $I(x, y)$ about $(0,0)$ (bilinear approximation for small shifts)

Bilinear approximation

For small shifts $[u, v]$ we have a 'bilinear approximation':

Change in appearance for a shift $[u, v]$

$$
E(u, v) \cong[u, v] M\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

where M is a 2×2 matrix computed from image derivatives:

$$
\begin{gathered}
\text { 'structure tensor' }
\end{gathered} M=\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
$$

By computing the gradient covariance matrix...

$$
\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

we are fitting a quadratic to the gradients over a small image region

Visualization of a quadratic

The surface $E(u, v)$ is locally approximated by a quadratic form

$$
\begin{aligned}
& E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
& M=\sum\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
\end{aligned}
$$

Which error surface indicates a good image feature?

What kind of image patch do these surfaces represent?

Which error surface indicates a good image feature?

flat

Which error surface indicates a good image feature?

Which error surface indicates a good image feature?

flat

edge 'line’

corner 'dot'
4. Compute eigenvalues and eigenvectors

4. Compute eigenvalues and eigenvectors

4. Compute eigenvalues and eigenvectors

1. Compute the determinant of
(returns a polynomial)
$M-\lambda I$

4. Compute eigenvalues and eigenvectors

\section*{eigenvalue
 | \downarrow | |
| :---: | :---: |
| $\begin{gathered} M \boldsymbol{e}=\lambda \boldsymbol{e} \\ \text { eigenvector } \end{gathered}$ | $(M-\lambda I) \boldsymbol{e}=0$ |

1. Compute the determinant of
(returns a polynomial)
2. Find the roots of polynomial $\underset{\substack{\text { reeurns eigenvalues) }}}{\operatorname{det}(M-\lambda I)=0}$

4. Compute eigenvalues and eigenvectors

\section*{eigenvalue
 $M \underset{\pi}{\boldsymbol{e}=\lambda \boldsymbol{e}}$| \downarrow |
| :---: |
| eigenvector |$\quad(M-\lambda I) \boldsymbol{e}=0$}

1. Compute the determinant of
$M-\lambda I$
(returns a polynomial)
2. Find the roots of $\underset{\text { (returns eigenvalues) }}{\operatorname{polyn}} \operatorname{det}(M-\lambda I)=0$
3. For each eigenvalue, solve
$(M-\lambda I) \boldsymbol{e}=0$
eig (M)

Visualization as an ellipse

Since M is symmetric, we have $\quad M=R^{-1}\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right] R$ We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

interpreting eigenvalues

interpreting eigenvalues

interpreting eigenvalues

interpreting eigenvalues

5. Use threshold on eigenvalues to detect corners

5. Use threshold on eigenvalues to detect corners

5. Use threshold on eigenvalues to detect corners

5. Use threshold on eigenvalues to detect corners

 (a function of)
5. Use threshold on eigenvalues to detect corners

 (a function of)
5. Use threshold on eigenvalues to detect corners

 (a function of)λ_{2}

Harris \& Stephens (1988)

$$
R=\operatorname{det}(M)-\kappa \operatorname{trace}^{2}(M)
$$

Kanade \& Tomasi (1994)

$$
R=\min \left(\lambda_{1}, \lambda_{2}\right)
$$

Nobel (1998)

$$
R=\frac{\operatorname{det}(M)}{\operatorname{trace}(M)+\epsilon}
$$

Harris Detector

C.Harris and M.Stephens. "A Combined Corner and Edge Detector."1988.

1. Compute x and y derivatives of image

$$
I_{x}=G_{\sigma}^{x} * I \quad I_{y}=G_{\sigma}^{y} * I
$$

2. Compute products of derivatives at every pixel

$$
I_{x^{2}}=I_{x} \cdot I_{x} \quad I_{y^{2}}=I_{y} \cdot I_{y} \quad I_{x y}=I_{x} \cdot I_{y}
$$

3. Compute the sums of the products of derivatives at each pixel

$$
S_{x^{2}}=G_{\sigma^{\prime}} * I_{x^{2}} \quad S_{y^{2}}=G_{\sigma^{\prime}} * I_{y^{2}} \quad S_{x y}=G_{\sigma^{\prime}} * I_{x y}
$$

Harris Detector

C.Harris and M.Stephens. "A Combined Corner and Edge Detector."1988.
4. Define the matrix at each pixel

$$
M(x, y)=\left[\begin{array}{ll}
S_{x^{2}}(x, y) & S_{x y}(x, y) \\
S_{x y}(x, y) & S_{y^{2}}(x, y)
\end{array}\right]
$$

5. Compute the response of the detector at each pixel

$$
R=\operatorname{det} M-k(\operatorname{trace} M)^{2}
$$

6. Threshold on value of R; compute non-max suppression.

Yet another option: $\quad f=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}$
How do you write this equivalently using determinant and trace?

Yet another option: $\quad f=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}=\frac{\operatorname{determinant}(H)}{\operatorname{trace}(H)}$

Different criteria

Corner response

Non-maximal suppression

Harris corner response is invariant to rotation

Ellipse rotates but its shape (eigenvalues) remains the same

Corner response \mathbf{R} is invariant to image rotation

Harris corner response is invariant to intensity changes

Partial invariance to affine intensity change
\square Only derivatives are used => invariance to intensity shift $I \rightarrow I+b$
\square Intensity scale: $I \rightarrow a I$

The Harris detector is not invariant to changes in ...

The Harris corner detector is not invariant to scale

edge!

corner!

Multi-scale detection

How can we make a feature detector scale-invariant?

How can we automatically select the scale?

Multi-scale blob detection

Intuitively...

Find local maxima in both position and scale

Formally...

Laplacian filter

Original signal

Highest response when the signal has the same characteristic scale as the filter
characteristic scale - the scale that produces peak filter response

characteristic scale
we need to search over characteristic scales

What happens if you apply different Laplacian filters?

Full size

sigma=2.1

jet color scale blue: low, red: high
sigma=4.2

sigma $=6$

sigma $=9.8$

sigma $=15.5$

sigma=17

What happened when you applied different Laplacian filters?

sigma=2.1

sigma=4.2

sigma $=6$

sigma $=9.8$

sigma $=15.5$

sigma=17

What happened when you applied different Laplacian filters?

optimal scale

Full size image

3/4 size image

optimal scale

Full size image

3/4 size image
cross-scale maximum

How would you implement scale selection?

implementation

For each level of the Gaussian pyramid compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid
if local maximum and cross-scale
save scale and location of feature (x, y, s)

References

Basic reading:

- Szeliski textbook, Sections 4.1.

