Feature detectors and descriptors

16-385 Computer Vision
http://www.cs.cmu.edu/~16385/ Spring 2019, Lecture 6



Course announcements

Homework 1 is due tonight at 23:59!

Homework 2 will be posted tonight and will be due on Monday, February 25,

There are additional office hours today: 3-5pm, covered by Abhay, at the
graphics lounge in Smith Hall.



Overview of today’s lecture

Leftover from lecture 5:

* Finish Harris corner detector.

» Multi-scale detection.

New in lecture ©:

« Why do we need feature descriptors?
« Designing feature descriptors.

« MOPS descriptor.

« GIST descriptor.

« Histogram of Textons descriptor.
 HOG descriptor.

« SIFT.



Slide credits

Most of these slides were adapted from:

 Kris Kitani (16-385, Spring 2017).



Why do we need feature
descriptors?



If we know where the good features are,
how do we match them?




Object instance recognition

Rothganger et al. 2003 Lowe 2002



lmage mosaicing




How do we describe an image patch’ §

Patches with similar content should have similar descriptors.




Designing feature
descriptors



Photometric transformations




GGeometric transformations

Multiple View
Geometr

0 Comauler vision

objects will appear at different scales,
translation and rotation



What is the best descriptor for an image feature?
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iImage patch

Just use the pixel values of the patch

)

vector of intensity values

Perfectly fine if geometry and appearance is unchanged
(a.k.a. template matching)



Tiny Images




Just down-sample it!
Simple, fast, robust to small affine transforms.




iImage patch

Just use the pixel values of the patch

)

vector of intensity values

Perfectly fine if geometry and appearance is unchanged
(a.k.a. template matching)

What are the problems?



iImage patch

Just use the pixel values of the patch

)

vector of intensity values

Perfectly fine if geometry and appearance is unchanged
(a.k.a. template matching)

What are the problems?
How can you be less sensitive to absolute intensity values?



lmage gradients

Use pixel differences

vector of x derivatives

‘binary descriptor’

Feature Is invariant to absolute intensity values

What are the problems?



lmage gradients

Use pixel differences

vector of x derivatives

Feature Is invariant to absolute intensity values

What are the problems?
How can you be less sensitive to deformations?



Color histogram

Count the colors in the image using a histogram

B ¢

Invariant to changes in scale and rotation

What are the problems?



Color histogram

Count the colors in the image using a histogram

Invariant to changes in scale and rotation

What are the problems?



Color histogram

Count the colors in the image using a histogram

Invariant to changes in scale and rotation

What are the problems?
How can you be more sensitive to spatial layout?



Spatial histograms

Compute histograms over spatial ‘cells’
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Retains rough spatial layout
Some Invariance to deformations

What are the problems?



Spatial histograms

Compute histograms over spatial ‘cells’
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Retains rough spatial layout
Some Invariance to deformations

What are the problems?
How can you be completely invariant to rotation?



Orientation normalization

Use the dominant image gradient direction to
normalize the orientation of the patch

save the orientation angle @ along with (:E}y}s)

What are the problems?



MOPS descriptor



Multi-Scale Oriented Patches (MOPS)

Multi-Image Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder.
International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517




Multi-Scale Oriented Patches (MOPS)

Multi-lmage Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder.
International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Given a feature (z,v, s, 0)

Get 40 x 40 image patch, subsample .
every 5th pixel =

(what’s the purpose of this step?)

Subtract the mean, divide by standard

deviation
(what’s the purpose of this step?)

Haar Wavelet Transform

(what’s the purpose of this step?)



Multi-Scale Oriented Patches (MOPS)

Multi-lmage Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder.
International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Given a feature (z,v, s, 0)

Get 40 x 40 image patch, subsample .
every 5th pixel =

(low frequency filtering, absorbs localization errors) L 2oL

Subtract the mean, divide by standard

deviation
(what’s the purpose of this step?)

Haar Wavelet Transform

(what’s the purpose of this step?)



Multi-Scale Oriented Patches (MOPS)

Multi-lmage Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder.
International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Given a feature (z,v,s,0)

Get 40 x 40 image patch, subsample .
every 5th pixel =

(low frequency filtering, absorbs localization errors) L 2oL

Subtract the mean, divide by standard

deviation
(removes bias and gain)

Haar Wavelet Transform

(what’s the purpose of this step?)




Multi-Scale Oriented Patches (MOPS)

Multi-lmage Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder.
International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Given a feature (z,v,s,0)

Get 40 x 40 image patch, subsample .
every 5th pixel =

(low frequency filtering, absorbs localization errors) L 2oL

Subtract the mean, divide by standard

deviation
(removes bias and gain)

Haar Wavelet Transform

(low frequency projection)




Haar Wavelets

(actually, Haar-like features)

Use responses of a bank of filters as a descriptor

1= €3
L= ¢ &
" e o [n

We will see later in class how to compute Haar wavelet
responses efficiently (in constant time) with integral images




GIST descriptor



1.

GIST

Compute filter responses (filter
bank of Gabor filters)

Divide image patch into 4 x 4
cells

Compute filter response
averages for each cell

Size of descriptoris 4 x 4 x N,
where N is the size of the filter
bank

Filter bank

4x4 cell

averaged filter responses



Gabor Filters

(1D examples)
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2D Gabor Filters
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e 202 cos (2w (kzx + kyy))

High frequency along axis Lower frequency (diagonal) Even lower frequency
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Even
Gabor
filter

... looks a lot lik

Laplacian
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f scale small compared to inverse frequency, the
Gabor filters become derivative operators
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Directional edge detectors
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GIST

Compute filter responses (filter bank of Gabor filters)
Divide image patch into 4 x 4 cells
Compute filter response averages for each cell

Size of descriptoris 4 x 4 x N, where N is the size of the filter
bank

What Is the GIST descriptor encoding?

Filter bank

4x4 cell

averaged filter responses



> W O

GIST

Compute filter responses (filter bank of Gabor filters)
Divide image patch into 4 x 4 cells
Compute filter response averages for each cell

Size of descriptoris 4 x 4 x N, where N is the size of the filter
bank

What Is the GIST descriptor encoding?

Rough spatial distribution of image gradients

Filter bank

4x4 cell

averaged filter responses



Histogram of Textons
descriptor



Textons

Julesz. Textons, the elements of texture perception, and their interactions. Nature 1981

Texture is characterized by the repetition of basic elements or textons
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For stochastic textures, it is the identity of the textons, not
their spatial arrangement, that matters
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Histogram of Textons descriptor

. JMI.LLL .“L_JIJL,
textons in

Histogram of

encoding’
‘pooling’
Histogram

Texton Map

Training

image | “

image

Filter Responses



Malik, Belongie, Shi, Leung. Textons, Contours and Regions: Cue Integration in Image Segmentation. ICCV 1999.

| earning Textons from data

hesaurus

Texton
Dictionary

Filter response
images of the over a bank of
same texture filters



| earning Textons from data

Texton
Dictionary

Multiple training Filter response
images of the over a bank of
same texture filters



Example of Filter Banks

Isotropic Gabor

(Gaussian
derivatives at
different scales
and orientations
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| earning Textons from data

Dictionary

Filter response

images of the same over a bank of
texture filters We will learn more about clustering
later in class (Bag of Words lecture).



Texton Dictionary

DR YE

Malik, Belongie, Shi, Leung. Textons, Contours and Regions: Cue Integration in Image Segmentation. ICCV 1999.
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Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid
2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



HOG descriptor



HOG

Dalal, Triggs. Histograms of Oriented Gradients for Human Detection. CVPR, 2005

histogram of ‘unsigned’
gradients

Cell

(8x8 pixels) _-_Il-ll

gradient magnitude histogram
(one for each cell)

soft binning

Block
(2x2 cells)

Concatenate and L-2 normalization

_-—I.-..JI--l.-l_---—.lll_---_l._l_

Single scale, no dominant orientation



Pedestrian detection

1 cell step size visualization

128 pixels 15X 7 x4 X306 =
16 cells 3780
15 blocks

04 pixels
8 cells
( blocks

Redundant representation due to overlapping blocks
How many times is each inner cell encoded?

http://chrisimccormick.wordpress.com/2013/05/09/hog-person-detector-tutorial/




SIFT



SIFT

(Scale Invariant Feature Transform)

SIFT describes both a detector and descriptor

Ay




1. Multl-scale extrema detection
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(Gaussian

Laplacian



Scale-space extrema

Selected if
larger than all
26 neighbors

Scale of Gaussian variance

s s

Difference of Gaussian (DoG)



2. Keypoint localization

2nd order Taylor series approximation of DoG scale-space

oft 1 ,O*f

(x)=f+— x4+ —-x —x
f(x)=1- Ox 27 Ox2
x={x,y,0}
Take the derivative and solve for extrema
0°f " of
Xm — ~ ¢ A
ox? 0x

Additional tests to retain only strong features



3. Orientation assignment

For a keypoint, L is the Gaussian-smoothed
image with the closest scale,

m(x,y) = \/(L(f +1,y) — Lz —1,y))* + (L(z,y + 1) — L(z,y — 1))

derivative y-derivative

A(x,y) = tan " ((L(z,y +1) — L(x,y — 1)) /(L(x + 1,y) — L(z — 1,y)))

Detection process returns

{$! y! J! 9}

location scale orientation



4. Keypoint descriptor

Image Gradients

(4 x 4 pixel per cell, 4 x 4 cells)

SIFT descriptor

(16 cells x 8 directions = 128 dims)
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Discriminative power

Global histogram




References

Basic reading:
o Szeliski textbook, Sections 4.1.2, 14.1.2.



