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Course announcements

• Homework 1 is due tonight at 23:59! 

• Homework 2 will be posted tonight and will be due on Monday, February 25th.

• There are additional office hours today: 3-5pm, covered by Abhay, at the 
graphics lounge in Smith Hall.



Leftover from lecture 5:

• Finish Harris corner detector.

• Multi-scale detection.

New in lecture 6:

• Why do we need feature descriptors?

• Designing feature descriptors.

• MOPS descriptor.

• GIST descriptor.

• Histogram of Textons descriptor.

• HOG descriptor.

• SIFT.

Overview of today’s lecture



Slide credits

Most of these slides were adapted from:

• Kris Kitani (16-385, Spring 2017).



Why do we need feature 

descriptors?



If we know where the good features are, 

how do we match them?



Object instance recognition

Rothganger et al. 2003 Lowe 2002

Schmid and Mohr 1997 Sivic and Zisserman, 2003



Image mosaicing





Designing feature 

descriptors



Photometric transformations



Geometric transformations

objects will appear at different scales,  

translation and rotation



What is the best descriptor for an image feature?



Image patch

Just use the pixel values of the patch

Perfectly fine if geometry and appearance is unchanged 
(a.k.a. template matching)
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Tiny Images



Just down-sample it!

Simple, fast, robust to small affine transforms.



Image patch

Just use the pixel values of the patch

Perfectly fine if geometry and appearance is unchanged 
(a.k.a. template matching)

What are the problems?
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Image patch

Just use the pixel values of the patch

Perfectly fine if geometry and appearance is unchanged 
(a.k.a. template matching)

What are the problems?

How can you be less sensitive to absolute intensity values? 
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Image gradients

Use pixel differences
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vector of x derivatives

What are the problems?

Feature is invariant to absolute intensity values

‘binary descriptor’



Image gradients

Use pixel differences
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vector of x derivatives

What are the problems?

How can you be less sensitive to deformations? 

Feature is invariant to absolute intensity values



Color histogram

Invariant to changes in scale and rotation

What are the problems?

colors

Count the colors in the image using a histogram



Color histogram

Invariant to changes in scale and rotation

What are the problems?

colors

Count the colors in the image using a histogram



Color histogram

Invariant to changes in scale and rotation

What are the problems?

How can you be more sensitive to spatial layout? 

colors

Count the colors in the image using a histogram



Spatial histograms

What are the problems?

Compute histograms over spatial ‘cells’

Retains rough spatial layout

Some invariance to deformations



Spatial histograms

What are the problems?

How can you be completely invariant to rotation? 

Compute histograms over spatial ‘cells’

Retains rough spatial layout

Some invariance to deformations



Orientation normalization
Use the dominant image gradient direction to 

normalize the orientation of the patch

What are the problems?

save the orientation angle              along with



MOPS descriptor



Multi-Scale Oriented Patches (MOPS)
Multi-Image Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder. 

International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517



Multi-Scale Oriented Patches (MOPS)
Multi-Image Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder. 

International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Given a feature

Get 40 x 40 image patch, subsample 

every 5th pixel
(what’s the purpose of this step?)

Subtract the mean, divide by standard 

deviation
(what’s the purpose of this step?)

Haar Wavelet Transform
(what’s the purpose of this step?)



Multi-Scale Oriented Patches (MOPS)
Multi-Image Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder. 

International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Given a feature

Get 40 x 40 image patch, subsample 

every 5th pixel
(low frequency filtering, absorbs localization errors)

Subtract the mean, divide by standard 

deviation
(what’s the purpose of this step?)

Haar Wavelet Transform
(what’s the purpose of this step?)



Multi-Scale Oriented Patches (MOPS)
Multi-Image Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder. 

International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Given a feature

Get 40 x 40 image patch, subsample 

every 5th pixel
(low frequency filtering, absorbs localization errors)

Subtract the mean, divide by standard 

deviation
(removes bias and gain)

Haar Wavelet Transform
(what’s the purpose of this step?)



Multi-Scale Oriented Patches (MOPS)
Multi-Image Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder. 

International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Given a feature

Get 40 x 40 image patch, subsample 

every 5th pixel
(low frequency filtering, absorbs localization errors)

Subtract the mean, divide by standard 

deviation
(removes bias and gain)

Haar Wavelet Transform
(low frequency projection)



Haar Wavelets
(actually, Haar-like features)

Use responses of a bank of filters as a descriptor

We will see later in class how to compute Haar wavelet 

responses efficiently (in constant time) with integral images



GIST descriptor



GIST
1. Compute filter responses (filter 

bank of Gabor filters)

2. Divide image patch into 4 x 4 

cells

3. Compute filter response 

averages for each cell

4. Size of descriptor is 4 x 4 x N, 

where N is the size of the filter 

bank

Filter bank

4 x 4 cell

averaged filter responses



Gabor Filters
(1D examples)



High frequency along axis Lower frequency (diagonal) Even lower frequency

2D Gabor Filters





Odd 

Gabor 

filter

Gaussian

Derivative

… looks a lot like…



Even 

Gabor 

filter

Laplacian

… looks a lot like…



If scale small compared to inverse frequency, the 

Gabor filters become derivative operators

s = 2  f = 1/6



Directional edge detectors



GIST

1. Compute filter responses (filter bank of Gabor filters)

2. Divide image patch into 4 x 4 cells

3. Compute filter response averages for each cell

4. Size of descriptor is 4 x 4 x N, where N is the size of the filter 

bank

Filter bank

4 x 4 cell

averaged filter responses

What is the GIST descriptor encoding?



GIST

1. Compute filter responses (filter bank of Gabor filters)

2. Divide image patch into 4 x 4 cells

3. Compute filter response averages for each cell

4. Size of descriptor is 4 x 4 x N, where N is the size of the filter 

bank

Filter bank

4 x 4 cell

averaged filter responses

What is the GIST descriptor encoding?

Rough spatial distribution of image gradients



Histogram of Textons

descriptor



Textons
Julesz. Textons, the elements of texture perception, and their interactions. Nature 1981

Texture is characterized by the repetition of basic elements or textons

For stochastic textures, it is the identity of the textons, not 

their spatial arrangement, that matters



Training 

image

Filter Responses

Texton Map Histogram of 

textons in 

image

Histogram of Textons descriptor

‘encoding’

‘pooling’



Learning Textons from data

Clustering

Texton 

Dictionary

Multiple training 

images of the 

same texture

Filter response 

over a bank of 

filters

patches

Malik, Belongie, Shi, Leung. Textons, Contours and Regions: Cue Integration in Image Segmentation. ICCV 1999.



Learning Textons from data

Clustering

Texton 

Dictionary

Filter response 

over a bank of 

filters

patches

Multiple training 

images of the 

same texture



Example of Filter Banks

Isotropic Gabor

Gaussian 

derivatives at 

different scales 

and orientations

‘S’

‘LM’

‘MR8’



Learning Textons from data

Clustering

Texton 

Dictionary

Multiple training 

images of the same 

texture

Filter response 

over a bank of 

filters

patches

We will learn more about clustering 

later in class (Bag of Words lecture).



Texton Dictionary

Malik, Belongie, Shi, Leung. Textons, Contours and Regions: Cue Integration in Image Segmentation. ICCV 1999.



Universal texton dictionary

histogram

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 

2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



HOG descriptor



HOG
Dalal, Triggs. Histograms of Oriented Gradients for Human Detection. CVPR, 2005

gradient magnitude histogram

(one for each cell)

Block
(2x2 cells)

Cell
(8x8 pixels)

Single scale, no dominant orientation

histogram of ‘unsigned’ 

gradients

soft binning

Concatenate and L-2 normalization



Pedestrian detection

64 pixels

8 cells

7 blocks

128 pixels

16 cells

15 blocks

http://chrisjmccormick.wordpress.com/2013/05/09/hog-person-detector-tutorial/

15 x 7 x 4 x 36 = 

3780

1 cell step size visualization

Redundant representation due to overlapping blocks

How many times is each inner cell encoded?



SIFT



SIFT
(Scale Invariant Feature Transform)

SIFT describes both a detector and descriptor

1. Multi-scale extrema detection

2. Keypoint localization

3. Orientation assignment

4. Keypoint descriptor



1. Multi-scale extrema detection
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Gaussian

Laplacian



Scale-space extrema

Selected if 

larger than all 

26 neighbors

Difference of Gaussian (DoG)
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2. Keypoint localization
2nd order Taylor series approximation of DoG scale-space

Take the derivative and solve for extrema

Additional tests to retain only strong features



3. Orientation assignment
For a keypoint, L is the Gaussian-smoothed

image with the closest scale,

Detection process returns

location scale orientation

x-derivative y-derivative



4. Keypoint descriptor
Image Gradients
(4 x 4 pixel per cell, 4 x 4 cells)

SIFT descriptor
(16 cells x 8 directions = 128 dims)

Gaussian weighting
(sigma = half width)



Discriminative power

Raw pixels

Generalization power

Sampled Locally orderless Global histogram



Basic reading:
• Szeliski textbook, Sections 4.1.2, 14.1.2.

References


