

16-385 Computer Vision
http://www.cs.cmu.edu/~16385/ Spring 2019, Lecture 7

Course announcements

- Homework 2 is posted on the course website.
- It is due on February $27^{\text {th }}$ at 23:59 pm.
- Start early because it is much larger and more difficult than homework 1.
- Note the updated deadline - homeworks are now back in sync with lectures, but homework 4 will be turned into a single-week homework.

Overview of today's lecture

- Reminder: image transformations.
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

Slide credits

Most of these slides were adapted from:

- Kris Kitani (16-385, Spring 2017).

Reminder: image transformations

What is an image?

$$
f(\boldsymbol{x})
$$

grayscale image

What is the range of the image function f ?
 the image function?

$$
\text { domain } \boldsymbol{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

A (grayscale) image is a 2D function.

What types of image transformations can we do?

What types of image transformations can we do?

Warping example: feature matching

Warping example: feature matching

Warping example: feature matching

- object recognition
- 3D reconstruction
- augmented reality
- image stitching

How do you compute the transformation?

Warping example: feature matching

Given a set of matched feature points:

and a transformation:

find the best estimate of the parameters

2D transformations

2D transformations

translation

affine

rotation

perspective

aspect

cylindrical

2D planar transformations

y

2D planar transformations

How would you implement scaling?

- Each component multiplied by a scalar
- Uniform scaling - same scalar for each component

2D planar transformations

$$
\begin{gathered}
x^{\prime}=a x \\
y^{\prime}=b y
\end{gathered}
$$

Scale
What's the effect of using different scale factors?

- Each component multiplied by a scalar
- Uniform scaling - same scalar for each component

2D planar transformations

$$
\begin{aligned}
x^{\prime} & =a x \\
y^{\prime} & =b y
\end{aligned}
$$

matrix representation of scaling:
Scale

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]}_{\text {scaling matrix S }}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Each component multiplied by a scalar
- Uniform scaling - same scalar for each component

2D planar transformations

y

How would you implement shearing?

2D planar transformations

$$
\begin{aligned}
x^{\prime} & =x+a \cdot y \\
y^{\prime} & =b \cdot x+y
\end{aligned}
$$

Shear
or in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & a \\
b & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D planar transformations

y

How would you implement rotation?
rotation around the origin

$$
\boldsymbol{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D planar transformations

y

2D planar transformations

Polar coordinates...

$$
\begin{aligned}
& x=r \cos (\phi) \\
& y=r \sin (\phi) \\
& x^{\prime}=r \cos (\phi+\theta) \\
& y^{\prime}=r \sin (\phi+\theta)
\end{aligned}
$$

Trigonometric Identity...
$x^{\prime}=r \cos (\phi) \cos (\theta)-r \sin (\phi) \sin (\theta)$
$y^{\prime}=r \sin (\phi) \cos (\theta)+r \cos (\phi) \sin (\theta)$

Substitute...
$x^{\prime}=x \cos (\theta)-y \sin (\theta)$
$y^{\prime}=x \sin (\theta)+y \cos (\theta)$

2D planar transformations

y

$$
\begin{gathered}
x^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \quad \begin{array}{l}
x^{\prime}=x \cos \theta-y \sin \theta \\
y^{\prime}=x \sin \theta+y \cos \theta \\
\text { or in matrix form: }
\end{array} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
\text { rotation around } \\
\text { the origin }
\end{array}\right]}
\end{gathered}
$$

2D planar and linear transformations

$$
\begin{aligned}
& x^{\prime}=f(x ; p) \\
& \downarrow \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=M\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
& \text { parameters } p
\end{aligned}
$$

2D planar and linear transformations

Scale
$\mathbf{M}=\left[\begin{array}{cc}s_{x} & 0 \\ 0 & s_{y}\end{array}\right]$
Rotate
$\mathbf{M}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

Shear

$$
\mathbf{M}=\left[\begin{array}{cc}
1 & s_{x} \\
s_{y} & 1
\end{array}\right]
$$

2D translation

y $\xrightarrow{\text { How would you implement translater }}$

2D translation

y

$$
\begin{aligned}
x^{\prime} & =x+t_{x} \\
y^{\prime} & =y+t_{x}
\end{aligned}
$$

What about matrix representation?

$$
\mathbf{M}=\left[\begin{array}{ll}
? & ? \\
? & ?
\end{array}\right]
$$

2D translation

y

Not possible.

Projective geometry 101

Homogeneous coordinates

heterogeneous homogeneous coordinates coordinates

- Represent 2D point with a 3D vector

Homogeneous coordinates

heterogeneous homogeneous
coordinates coordinates

$\left[\begin{array}{l}x \\ y\end{array}\right] \Rightarrow\left[\begin{array}{l}x \\ y \\ 1\end{array}\right] \stackrel{\text { def }}{=}\left[\begin{array}{c}a x \\ a y \\ a\end{array}\right]$

- Represent 2D point with a 3D vector
- 3D vectors are only defined up to scale

2D translation

y

$$
\begin{aligned}
x^{\prime} & =x+t_{x} \\
y^{\prime} & =y+t_{x}
\end{aligned}
$$

What about matrix representation using homogeneous coordinates?

2D translation

y

2D translation using homogeneous coordinates

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]
$$

Homogeneous coordinates

Conversion:

- heterogeneous \rightarrow homogeneous

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- homogeneous \rightarrow heterogeneous

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x / w \\
y / w
\end{array}\right]
$$

- point at infinity

Special points:

$$
\left[\begin{array}{lll}
x & y & 0
\end{array}\right]
$$

- undefined

$$
\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]
$$

- scale invariance

$$
\left[\begin{array}{lll}
x & y & w
\end{array}\right]^{\top}=\lambda\left[\begin{array}{lll}
x & y & w
\end{array}\right]^{\top}
$$

Projective geometry

What does scaling X correspond to?

Transformations in projective geometry

2D transformations in heterogeneous coordinates

Re-write these transformations as 3×3 matrices:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{l}
?
\end{array}\right]}_{\text {scaling }}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{l}
?
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

rotation
shearing

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=[} \\
& \text { lid }
\end{aligned}
$$

2D transformations in heterogeneous coordinates

Re-write these transformations as 3×3 matrices:

$$
\left[\begin{array}{c}
{\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]} \\
\qquad \begin{array}{ccc}
{\left[\begin{array}{ccc}
\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 \\
0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{array}\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right] \\
\text { scaling }
\end{array}\right.
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=[
$$

rotation
I

shearing

2D transformations in heterogeneous coordinates

Re-write these transformations as 3×3 matrices:

$$
\left[\begin{array}{c}
{\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]} \\
\qquad \begin{array}{ccc}
{\left[\begin{array}{ccc}
\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 \\
0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{array}\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right] \\
\text { scaling }
\end{array}\right.
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=[
$$

$$
]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

rotation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & \beta_{x} & 0 \\
\beta_{y} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

shearing

2D transformations in heterogeneous coordinates

Re-write these transformations as 3×3 matrices:

$$
\begin{gathered}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=} \\
=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
\text { translation }
\end{gathered}
$$

$$
\left[\begin{array}{c}
{\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]}
\end{array}=\underset{\text { scaling }}{\left[\begin{array}{ccc}
\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 \\
0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]}\right.
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}_{\text {rotation }}
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\underset{\text { shearing }}{\left[\begin{array}{ccc}
1 & \beta_{x} & 0 \\
\beta_{y} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Matrix composition

Transformations can be combined by matrix multiplication:

$$
\begin{aligned}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right] } & =\left(\left[\begin{array}{lll}
1 & 0 & t x \\
0 & 1 & t y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s x & 0 & 0 \\
0 & s y & 0 \\
0 & 0 & 1
\end{array}\right]\right) \\
\mathrm{p}^{\prime} & =?
\end{aligned}\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Matrix composition

Transformations can be combined by matrix multiplication:

$$
\begin{aligned}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right] } & =\left(\left[\begin{array}{lll}
1 & 0 & t x \\
0 & 1 & t y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s x & 0 & 0 \\
0 & s y & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \\
\mathbf{p}^{\prime} & =\operatorname{translation}\left(\mathrm{t}_{x}, \mathrm{t}_{y}\right) \quad \operatorname{rotation}(\theta)
\end{aligned}
$$

Classification of 2D transformations

Classification of 2D transformations

Classification of 2D transformations

Name	Matrix	\# D.O.F.
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]$	$?$
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]$	$?$
similarity	$[s \boldsymbol{R} \mid t]$	$?$
affine	$[\boldsymbol{A}]$	$?$
projective	$[\tilde{\boldsymbol{H}}]$	$?$

Classification of 2D transformations

Translation: $\left[\begin{array}{ccc}1 & 0 & t_{1} \\ 0 & 1 & t_{2} \\ 0 & 0 & 1\end{array}\right]$

How many degrees of freedom?

Classification of 2D transformations

Are there any values that are related?

Classification of 2D transformations

How many degrees of freedom?

Classification of 2D transformations

Are there any values that are related?

Classification of 2D transformations

multiply these four by scale s

Similarity: uniform scaling + rotation

+ translation

How many degrees of freedom?

Classification of 2D transformations

Classification of 2D transformations

Are there any values that are related?

Classification of 2D transformations

Are there any values that are related?

Classification of 2D transformations

How many degrees of freedom?

Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines

- ratios are preserved
- compositions of affine transforms are also affine transforms

Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines

- ratios are preserved
- compositions of affine transforms are also affine transforms

How to interpret affine transformations here?

Projective transformations

Projective transformations are combinations of

- affine transformations; and
- projective wraps

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

How many degrees of freedom?
Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

Projective transformations

Projective transformations are combinations of

- affine transformations; and
- projective wraps

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

8 DOF: vectors (and therefore
Properties of projective transformations: matrices) are defined up to scale)

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

How to interpret projective transformations here?

mage plane

Determining unknown 2D transformations

Determining unknown transformations

Suppose we have two triangles: ABC and DEF.

Determining unknown transformations

Suppose we have two triangles: ABC and DEF.

- What type of transformation will map A to D, B to E, and C to F?

Determining unknown transformations

Suppose we have two triangles: ABC and DEF.

- What type of transformation will map A to D, B to E, and C to F ?
- How do we determine the unknown parameters?

Affine transform:

uniform scaling + shearing
+ rotation + translation

a_{4} \& a_{5} \& a_{6}

0 \& 0 \& 1\end{array}\right] \quad\)| How many degrees of |
| :--- |
| freedom do we have? |

Determining unknown transformations

Suppose we have two triangles: ABC and DEF.

- What type of transformation will map A to D, B to E, and C to F ?
- How do we determine the unknown parameters?

unknowns
$\boldsymbol{x}^{\prime}=\mathbf{M} \boldsymbol{x}$

point correspondences
- One point correspondence gives how many equations?
- How many point correspondences do we need?

Determining unknown transformations

Suppose we have two triangles: ABC and DEF .

- What type of transformation will map A to D, B to E, and C to F ?
- How do we determine the unknown parameters?

$\boldsymbol{x}^{\prime}=\mathbf{M} \boldsymbol{x}$

point correspondences

Least Squares Error

$$
E_{\mathrm{LS}}=\sum_{i}\left\|f\left(\boldsymbol{x}_{i} ; \boldsymbol{p}\right)-\boldsymbol{x}_{\boldsymbol{x}}^{\prime}\right\|^{2}
$$

Least Squares Error
What is this?

$$
\boldsymbol{H}_{\mathrm{LS}}=\sum_{i} \mid \overbrace{\substack{\text { What is } \\ \text { this? }}} \overbrace{\substack{\text { What is }}}^{\substack{\boldsymbol{x} \\ \text { this? }}}
$$

Least Squares Error

Least Squares Error

$$
E_{\mathrm{LS}}=\sum_{i} \frac{\left\|f\left(\boldsymbol{x}_{i} ; \boldsymbol{p}\right)-\boldsymbol{x}_{i}^{\prime}\right\|^{2}}{\vdots}
$$

Least Squares Error

$$
\begin{aligned}
E_{\mathrm{LS}}= & \sum_{i}\left\|\boldsymbol{f}\left(\boldsymbol{x}_{i} ; \boldsymbol{p}\right)-\boldsymbol{x}_{i}^{\prime}\right\|^{2} \\
& \text { What is the free variable? } \\
& \text { What do we want to optimize? }
\end{aligned}
$$

Find parameters that minimize squared error

$$
\hat{\boldsymbol{p}}=\underset{\boldsymbol{p}}{\arg \min } \sum_{i}\left\|\boldsymbol{f}\left(\boldsymbol{x}_{i} ; \boldsymbol{p}\right)-\boldsymbol{x}_{i}^{\prime}\right\|^{2}
$$

General form of linear least squares
(Warning: change of notation. x is a vector of parameters!)

$$
\begin{aligned}
E_{\mathrm{LLS}} & =\sum_{i}\left|\boldsymbol{a}_{i} \boldsymbol{x}-\boldsymbol{b}_{i}\right|^{2} \\
& =\|\mathbf{A} \boldsymbol{x}-\boldsymbol{b}\|^{2} \quad \text { (matrix form) }
\end{aligned}
$$

Determining unknown transformations

Affine transformation:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
p_{1} & p_{2} & p_{3} \\
p_{4} & p_{5} & p_{6}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Why can we drop the last line?

Vectorize transformation parameters:

Stack equations from point correspondences:

General form of linear least squares
(Warning: change of notation. x is a vector of parameters!)

$$
\begin{aligned}
E_{\mathrm{LLS}} & =\sum_{i}\left|\boldsymbol{a}_{i} \boldsymbol{x}-\boldsymbol{b}_{i}\right|^{2} \\
& =\|\mathbf{A} \boldsymbol{x}-\boldsymbol{b}\|^{2}
\end{aligned}
$$

This function is quadratic.
How do you find the root of a quadratic?

Solving the linear system

Convert the system to a linear least-squares problem:

$$
E_{\mathrm{LLS}}=\|\mathbf{A} \boldsymbol{x}-\boldsymbol{b}\|^{2}
$$

Expand the error:

$$
E_{\mathrm{LLS}}=\boldsymbol{x}^{\top}\left(\mathbf{A}^{\top} \mathbf{A}\right) \boldsymbol{x}-2 \boldsymbol{x}^{\top}\left(\mathbf{A}^{\top} \boldsymbol{b}\right)+\|\boldsymbol{b}\|^{2}
$$

Minimize the error:

$$
\text { Set derivative to } 0\left(\mathbf{A}^{\top} \mathbf{A}\right) \boldsymbol{x}=\mathbf{A}^{\top} \boldsymbol{b}
$$

$$
\text { Solve for } x \quad \boldsymbol{x}=\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \boldsymbol{b} \longleftarrow \quad \begin{gathered}
\text { Note: You almost never want to } \\
\text { compute the inverse of a matrix. }
\end{gathered}
$$

Linear least squares estimation only works when the transform function is ?

Linear least squares estimation only works when the transform function is linear! (duh)

Also doesn't deal well with outliers

Determining unknown image warps

Determining unknown image warps

Suppose we have two images.

- How do we compute the transform that takes one to the other?

Forward warping

Suppose we have two images.

- How do we compute the transform that takes one to the other?

1. Form enough pixel-to-pixel correspondences between two images
\longleftarrow later lecture
2. Solve for linear transform parameters as before
3. Send intensities $f(x, y)$ in first image to their corresponding location in the second image

Forward warping

Suppose we have two images.

- How do we compute the transform that takes one to the other?

what is the problem with this?

1. Form enough pixel-to-pixel correspondences between two images
2. Solve for linear transform parameters as before
3. Send intensities $f(x, y)$ in first image to their corresponding location in the second image

Forward warping

Pixels may end up between two points

- How do we determine the intensity of each point?

Forward warping

Pixels may end up between two points

- How do we determine the intensity of each point?
\checkmark We distribute color among neighboring pixels $\left(x^{\prime}, y^{\prime}\right)$ ("splatting")

- What if a pixel $\left(x^{\prime}, y^{\prime}\right)$ receives intensity from more than one pixels (x, y) ?

Forward warping

Pixels may end up between two points

- How do we determine the intensity of each point?
\checkmark We distribute color among neighboring pixels $\left(x^{\prime}, y^{\prime}\right)$ ("splatting")

- What if a pixel $\left(x^{\prime}, y^{\prime}\right)$ receives intensity from more than one pixels (x, y) ?
\checkmark We average their intensity contributions.

Inverse warping

Suppose we have two images.

- How do we compute the transform that takes one to the other?

$$
f(x, y)
$$

what is the problem with this?

1. Form enough pixel-to-pixel correspondences between two images \longleftarrow
2. Solve for linear transform parameters as before, then compute its inverse
3. Get intensities $g\left(x^{\prime}, y^{\prime}\right)$ in in the second image from point $(x, y)=T^{-1}\left(x^{\prime}, y^{\prime}\right)$ in first image

Inverse warping

Pixel may come from between two points

- How do we determine its intensity?

Inverse warping

Pixel may come from between two points

- How do we determine its intensity?
\checkmark Use interpolation

Bilinear interpolation

Grayscale example

In matrix form (with adjusted coordinates)

$$
f(x, y) \approx\left[\begin{array}{ll}
1-x & x
\end{array}\right]\left[\begin{array}{ll}
f(0,0) & f(0,1) \\
f(1,0) & f(1,1)
\end{array}\right]\left[\begin{array}{c}
1-y \\
y
\end{array}\right] .
$$

In Matlab:
call interp2

Forward vs inverse warping

Suppose we have two images.

- How do we compute the transform that takes one to the other?

Pros and cons of each?

Forward vs inverse warping

Suppose we have two images.

- How do we compute the transform that takes one to the other?

- Inverse warping eliminates holes in target image
- Forward warping does not require existence of inverse transform

References

Basic reading:

- Szeliski textbook, Section 3.6.

Additional reading:

- Hartley and Zisserman, "Multiple View Geometry in Computer Vision," Cambridge University Press 2004. a comprehensive treatment of all aspects of projective geometry relating to computer vision, and also a very useful reference for the second part of the class.
- Richter-Gebert, "Perspectives on projective geometry," Springer 2011.
a beautiful, thorough, and very accessible mathematics textbook on projective geometry (available online for free from CMU's library).

