2D transformations (a.k.a. warping)

16-385 Computer Vision Spring 2019, Lecture 7

http://www.cs.cmu.edu/~16385/

Course announcements

- Homework 2 is posted on the course website.
 - It is due on February 27th at 23:59 pm.
 - Start early because it is much larger and more difficult than homework 1.
 - Note the updated deadline homeworks are now back in sync with lectures, but homework 4 will be turned into a single-week homework.

Overview of today's lecture

- Reminder: image transformations.
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

Slide credits

Most of these slides were adapted from:

• Kris Kitani (16-385, Spring 2017).

Reminder: image transformations

What is an image?

grayscale image

What is the range of the image function f?

A (grayscale) image is a 2D function.

What types of image transformations can we do?

changes pixel values

changes pixel locations

What types of image transformations can we do?

changes range of image function

F

changes *domain* of image function

- object recognition
- 3D reconstruction
- augmented reality
- image stitching

How do you compute the transformation?

Given a set of matched feature points:

and a transformation:

$$x' = f(x; p)$$
transformation \checkmark sparameters

find the best estimate of the parameters

What kind of transformation functions f are there?

2D transformations

2D transformations

translation

rotation

aspect

perspective

cylindrical

affine

How would you implement scaling?

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

$$\begin{aligned} x' &= ax\\ y' &= by \end{aligned}$$

What's the effect of using different scale factors?

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

y

 $\begin{aligned} x' &= ax \\ y' &= by \end{aligned}$

matrix representation of scaling:

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

How would you implement shearing?

How would you implement rotation?

Polar coordinates... $x = r \cos (\phi)$ $y = r \sin (\phi)$ $x' = r \cos (\phi + \theta)$ $y' = r \sin (\phi + \theta)$

Trigonometric Identity... $x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$ $y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$

Substitute... $x' = x \cos(\theta) - y \sin(\theta)$ $y' = x \sin(\theta) + y \cos(\theta)$

x

2D planar and linear transformations

2D planar and linear transformations

Flip across y $\mathbf{M} = \begin{bmatrix} s_x & 0\\ 0 & s_y \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} -1 & 0\\ 0 & 1 \end{bmatrix}$ Scale Rotate Flip across origin $\mathbf{M} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ Shear Identity $\mathbf{M} = \begin{bmatrix} 1 & s_x \\ s_y & 1 \end{bmatrix} \qquad \qquad \mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

How would you implement translation?

$$x' = x + t_x$$
$$y' = y + t_x$$

What about matrix representation?

$$\mathbf{M} = \left[\begin{array}{cc} ? & ? \\ ? & ? \end{array} \right]$$

x

$$x' = x + t_x$$
$$y' = y + t_x$$

What about matrix representation?

Not possible.

Projective geometry 101

Homogeneous coordinates

heterogeneous homogeneous coordinates coordinates

• Represent 2D point with a 3D vector

Homogeneous coordinates

heterogeneous homogeneous coordinates coordinates

- Represent 2D point with a 3D vector
- 3D vectors are only defined up to scale

$$x' = x + t_x$$
$$y' = y + t_x$$

What about matrix representation using homogeneous coordinates?

x

2D translation using homogeneous coordinates

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$

Homogeneous coordinates

Conversion:

• heterogeneous \rightarrow homogeneous

 $\left[\begin{array}{c} x\\ y\end{array}\right] \Rightarrow \left[\begin{array}{c} x\\ y\\ 1\end{array}\right]$

• homogeneous \rightarrow heterogeneous

$$\left[\begin{array}{c} x\\ y\\ w \end{array}\right] \Rightarrow \left[\begin{array}{c} x/w\\ y/w \end{array}\right]$$

• scale invariance

$$\begin{bmatrix} x & y & w \end{bmatrix}^{ op} = \lambda \begin{bmatrix} x & y & w \end{bmatrix}^{ op}$$

Special points:

• point at infinity

$$\left[egin{array}{ccc} x & y & 0 \end{array}
ight]$$

undefined

$$\left[\begin{array}{ccc} 0 & 0 & 0 \end{array}\right]$$
Projective geometry

What does scaling **X** correspond to?

Transformations in projective geometry

Matrix composition

Transformations can be combined by matrix multiplication:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ w \end{bmatrix}$$
$$p' = ? ? ? P$$

Matrix composition

Transformations can be combined by matrix multiplication:

$$\begin{bmatrix} x'\\y'\\w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx\\0 & 1 & ty\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\Theta & -\sin\Theta & 0\\\sin\Theta & \cos\Theta & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0\\0 & sy & 0\\0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x\\y\\w \end{bmatrix}$$
$$p' = \text{translation}(t_x, t_y) \qquad \text{rotation}(\theta) \qquad \text{scale}(s, s) \qquad p$$

Does the multiplication order matter?

Name	Matrix	# D.O.F.
translation	$\left[egin{array}{c c} I & t \end{array} ight]$?
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]$?
similarity	$\left[\left. s \boldsymbol{R} \right \boldsymbol{t} \right]$?
affine	$\begin{bmatrix} A \end{bmatrix}$?
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]$?

Translation: $\begin{bmatrix} 1 & 0 & t_1 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{bmatrix}$

How many degrees of freedom?

Euclidean (rigid): rotation + translation

$$\left[\begin{array}{rrrr} r_1 & r_2 & r_3 \\ r_4 & r_5 & r_6 \\ 0 & 0 & 1 \end{array}\right]$$

Are there any values that are related?

Euclidean (rigid): rotation + translation $\begin{bmatrix} \cos\theta & -\sin\theta & r_3 \\ \sin\theta & \cos\theta & r_6 \\ 0 & 0 & 1 \end{bmatrix}$

How many degrees of freedom?

what will happen to the image if this increases?

Euclidean (rigid): rotation + translation $\begin{bmatrix} \cos \theta & -\sin \theta & r_3 \\ \sin \theta & \cos \theta & r_6 \\ 0 & 0 & 1 \end{bmatrix}$

Similarity: uniform scaling + rotation + translation

$$\left[\begin{array}{cccc} r_1 & r_2 & r_3 \\ r_4 & r_5 & r_6 \\ 0 & 0 & 1 \end{array} \right]$$

Are there any values that are related?

How many degrees of freedom?

Affine transform: uniform scaling + shearing + rotation + translation

$$\left[\begin{array}{rrrrr}a_1 & a_2 & a_3\\ a_4 & a_5 & a_6\\ 0 & 0 & 1\end{array}\right]$$

Are there any values that are related?

Affine transform: uniform scaling + shearing + rotation + translation

$$\left[\begin{array}{rrrrr}a_1 & a_2 & a_3\\ a_4 & a_5 & a_6\\ 0 & 0 & 1\end{array}\right]$$

Are there any values that are related?

Affine transform: uniform scaling + shearing + rotation + translation

$$\left[\begin{array}{rrrrr}a_1 & a_2 & a_3\\ a_4 & a_5 & a_6\\ 0 & 0 & 1\end{array}\right]$$

How many degrees of freedom?

Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved
- compositions of affine transforms are also affine transforms

Does the last coordinate w ever change?

Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved
- compositions of affine transforms are also affine transforms

Nope! But what does that mean?

How to interpret affine transformations here?

Projective transformations

Projective transformations are combinations of

- affine transformations; and
- projective wraps

Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

$$\begin{bmatrix} x'\\y'\\w'\end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix} \begin{bmatrix} x\\y\\w\end{bmatrix}$$

How many degrees of freedom?

Projective transformations

Projective transformations are combinations of

- affine transformations; and
- projective wraps

Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

$$\begin{bmatrix} x'\\y'\\w'\end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix} \begin{bmatrix} x\\y\\w\end{bmatrix}$$

8 DOF: vectors (and therefore matrices) are defined up to scale)

How to interpret projective transformations here?

Suppose we have two triangles: ABC and DEF.

• What type of transformation will map A to D, B to E, and C to F?

- What type of transformation will map A to D, B to E, and C to F?
- How do we determine the unknown parameters?

- What type of transformation will map A to D, B to E, and C to F?
- How do we determine the unknown parameters?

- What type of transformation will map A to D, B to E, and C to F?
- How do we determine the unknown parameters?

Least Squares Error

$$E_{\mathrm{LS}} = \sum_{i} \|\boldsymbol{f}(\boldsymbol{x}_{i};\boldsymbol{p}) - \boldsymbol{x}_{i}'\|^{2}$$

Least Squares Error

Least Squares Error

$$E_{\text{LS}} = \sum_{i} \| \boldsymbol{f}(\boldsymbol{x}_{i}; \boldsymbol{p}) - \boldsymbol{x}'_{i} \|^{2}$$

What is the free variable?
What do we want to optimize?

Find parameters that minimize squared error

$$\hat{m{p}} = rgmin_{m{p}} \sum_i \|m{f}(m{x}_i;m{p}) - m{x}_i'\|^2$$

General form of linear least squares

(**Warning:** change of notation. x is a vector of parameters!)

$$E_{ ext{LLS}} = \sum_i |oldsymbol{a}_i oldsymbol{x} - oldsymbol{b}_i|^2 \ = \|oldsymbol{A}oldsymbol{x} - oldsymbol{b}\|^2 \quad ext{(matrix form}$$

Determining unknown transformations

Affine transformation:

Vectorize transformation parameters:

Stack equations from point correspondences:

Notation in system form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 \\ p_4 & p_5 & p_6 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 Why can we drop the last line?

 $\begin{bmatrix} x' \\ y' \\ x' \\ y' \end{bmatrix} = \begin{bmatrix} x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \\ x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix}$ p_5 b \boldsymbol{x}

General form of linear least squares

(**Warning:** change of notation. x is a vector of parameters!)

$$egin{aligned} E_{ ext{LLS}} &= \sum_i |oldsymbol{a}_i oldsymbol{x} - oldsymbol{b}_i|^2 \ &= \|oldsymbol{A} oldsymbol{x} - oldsymbol{b}\|^2 \quad ext{(matrix form)} \end{aligned}$$

This function is quadratic. How do you find the root of a quadratic?

Solving the linear system

Convert the system to a linear least-squares problem:

$$E_{\text{LLS}} = \|\mathbf{A}\boldsymbol{x} - \boldsymbol{b}\|^2$$

Expand the error:

$$E_{\text{LLS}} = \boldsymbol{x}^{\top} (\mathbf{A}^{\top} \mathbf{A}) \boldsymbol{x} - 2 \boldsymbol{x}^{\top} (\mathbf{A}^{\top} \boldsymbol{b}) + \| \boldsymbol{b} \|^2$$

Minimize the error:

Set derivative to 0
$$(\mathbf{A}^{ op}\mathbf{A})m{x} = \mathbf{A}^{ op}m{b}$$

Solve for x $\boldsymbol{x} = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\boldsymbol{b} \leftarrow$ Note: You almost <u>never</u> want to compute the inverse of a matrix.

In Matlab:

$$x = A \setminus b$$

Linear least squares estimation only works when the transform function is ?

Linear least squares estimation only works when the transform function is linear! (duh)

Also doesn't deal well with outliers

Determining unknown image warps

Determining unknown image warps

Suppose we have two images.

• How do we compute the transform that takes one to the other?

Suppose we have two images.

• How do we compute the transform that takes one to the other?

later lecture

- 2. Solve for linear transform parameters as before
- 3. Send intensities f(x,y) in first image to their corresponding location in the second image

Suppose we have two images.

• How do we compute the transform that takes one to the other?

with this?

- 1. Form enough pixel-to-pixel correspondences between two images
- 2. Solve for linear transform parameters as before
- 3. Send intensities f(x,y) in first image to their corresponding location in the second image

Pixels may end up between two points

• How do we determine the intensity of each point?

Pixels may end up between two points

- How do we determine the intensity of each point?
- ✓ We distribute color among neighboring pixels (x',y') ("splatting")

• What if a pixel (x',y') receives intensity from more than one pixels (x,y)?

Pixels may end up between two points

- How do we determine the intensity of each point?
- ✓ We distribute color among neighboring pixels (x',y') ("splatting")

- What if a pixel (x',y') receives intensity from more than one pixels (x,y)?
- \checkmark We average their intensity contributions.

Inverse warping

Suppose we have two images.

• How do we compute the transform that takes one to the other?

with this?

- 1. Form enough pixel-to-pixel correspondences between two images
- 2. Solve for linear transform parameters as before, then compute its inverse
- 3. Get intensities g(x',y') in in the second image from point $(x,y) = T^{-1}(x',y')$ in first image

Inverse warping

Pixel may come from between two points

• How do we determine its intensity?

Inverse warping

Pixel may come from between two points

- How do we determine its intensity?
- \checkmark Use interpolation

Bilinear interpolation

Interpolate to find R2
 Interpolate to find R1
 Interpolate to find P

In matrix form (with adjusted coordinates) $f(x,y) \approx \begin{bmatrix} 1-x & x \end{bmatrix} \begin{bmatrix} f(0,0) & f(0,1) \\ f(1,0) & f(1,1) \end{bmatrix} \begin{bmatrix} 1-y \\ y \end{bmatrix}.$ In Matlab:

call interp2

Forward vs inverse warping

Suppose we have two images.

• How do we compute the transform that takes one to the other?

Pros and cons of each?

Forward vs inverse warping

Suppose we have two images.

• How do we compute the transform that takes one to the other?

- Inverse warping eliminates holes in target image
- Forward warping does not require existence of inverse transform

References

Basic reading:

• Szeliski textbook, Section 3.6.

Additional reading:

- Richter-Gebert, "Perspectives on projective geometry," Springer 2011.

 a beautiful, thorough, and very accessible mathematics textbook on projective geometry (available online for free from CMU's library).