Image homographies

16-385 Computer Vision http://www.cs.cmu.edu/~16385/ Spring 2019, Lecture 8

Course announcements

- Homework 2 was posted last Wednesday.
- Due on February $27^{\text {th }}$ at midnight.
- Start early cause it is much larger and more difficult than homework 1.
- Homework schedule has been adjusted on course website.
- We need to discuss HW4 and HW7.
- Do you prefer if HW schedule is shifted back to Fridays?

Overview of today's lecture

- Leftover from last time: Computing linear transformations.
- Motivation: panoramas.
- Back to warping: image homographies.
- Computing with homographies.
- The direct linear transform (DLT).
- Random Sample Consensus (RANSAC).

Slide credits

Most of these slides were adapted from:

- Kris Kitani (15-463, Fall 2016).
- Noah Snavely (Cornell).

Motivation for image alignment: panoramas.

How do you create a panorama?

Panorama: an image of (near) 360° field of view.

How do you create a panorama?

Panorama: an image of (near) 360° field of view.

1. Use a very wide-angle lens.

Wide-angle lenses

Fish-eye lens: can produce (near) hemispherical field of view.

What are the pros and cons of this?

How do you create a panorama?

Panorama: an image of (near) 360° field of view.

1. Use a very wide-angle lens.

- Pros: Everything is done optically, single capture.
- Cons: Lens is super expensive and bulky, lots of distortion (can be dealt-with in post).

Any alternative to this?

How do you create a panorama?

Panorama: an image of (near) 360° field of view.

1. Use a very wide-angle lens.

- Pros: Everything is done optically, single capture.
- Cons: Lens is super expensive and bulky, lots of distortion (can be dealt-with in post).

2. Capture multiple images and combine them.

Panoramas from image stitching

1. Capture multiple images from different viewpoints.
2. Stitch them together into a virtual wide-angle image.

How do we stitch images from different viewpoints?

Will standard stitching work?

1. Translate one image relative to another.
2. (Optionally) find an optimal seam.

How do we stitch images from different viewpoints?

Will standard stitching work?

1. Translate one image relative to another.
2. (Optionally) find an optimal seam.

right on top

Translation-only stitching is not enough to mosaic these images.

How do we stitch images from different viewpoints?

What else can we try?

How do we stitch images from different viewpoints?

Use image homographies.

Back to warping: image homographies

Classification of 2D transformations

Classification of 2D transformations

Classification of 2D transformations

Warping with different transformations

translation

affine

pProjective (homography)

View warping

original view

synthetic top view

synthetic side view

What are these black areas near the boundaries?

Virtual camera rotations

original view

rotations

Image rectification

Street art

Understanding geometric patterns

What is the pattern on the floor?

magnified view of floor

Understanding geometric patterns

What is the pattern on the floor?

Understanding geometric patterns

Very popular in renaissance drawings (when perspective was discovered)

rectified view of floor

reconstruction

A weird drawing

Holbein, "The Ambassadors"

A weird drawing

Holbein, "The Ambassadors"

A weird drawing

Holbein, "The Ambassadors"

rectified view
skull under anamorphic perspective

A weird drawing

Holbein, "The Ambassadors"

DIY: use a polished spoon to see the skull

Panoramas from image stitching

1. Capture multiple images from different viewpoints.
2. Stitch them together into a virtual wide-angle image.

When can we use homographies?

We can use homographies when...

1. ... the scene is planar; or

2. ... the scene is very far or has small (relative) depth variation \rightarrow scene is approximately planar

We can use homographies when...

3. ... the scene is captured under camera rotation only (no translation or pose change)

More on why this is the case in a later lecture.

Computing with homographies

Classification of 2D transformations

Applying a homography

1. Convert to homogeneous coordinates:

$$
p=\left[\begin{array}{l}
x \\
y
\end{array}\right] \Rightarrow P=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

What is the size of the homography matrix?
2. Multiply by the homography matrix:

$$
P^{\prime}=H \cdot P
$$

3. Convert back to heterogeneous coordinates: $P^{\prime}=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ w^{\prime}\end{array}\right] \Rightarrow p^{\prime}=\left[\begin{array}{c}x^{\prime} / w^{\prime} \\ y^{\prime} / w^{\prime}\end{array}\right]$

Applying a homography

1. Convert to homogeneous coordinates:

$$
p=\left[\begin{array}{l}
x \\
y
\end{array}\right] \Rightarrow P=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

What is the size of the homography matrix? \searrow Ans
graphy matrix: $\quad P^{\prime}=H \cdot P$
How many degrees of freedom does the homography matrix have?
3. Convert back to heterogeneous coordinates: $P^{\prime}=\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ w^{\prime}\end{array}\right] \Rightarrow p^{\prime}=\left[\begin{array}{l}x^{\prime} / w^{\prime} \\ y^{\prime} / w_{w^{\prime}}\end{array}\right]$

Applying a homography

1. Convert to homogeneous coordinates:

$$
p=\left[\begin{array}{l}
x \\
y
\end{array}\right] \Rightarrow P=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

What is the siz
Answer: 3×3
2. Multiply by the homography matrix:

$$
P^{\prime}=H \cdot P
$$

How many degrees of freedom does the homography matrix have? Answer: 8
3. Convert back to heterogeneous coordinates: $P^{\prime}=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ w^{\prime}\end{array}\right] \Rightarrow p^{\prime}=\left[\begin{array}{l}x^{\prime} / w^{\prime} \\ y^{\prime} / w^{\prime}\end{array}\right]$

Applying a homography

What is the size of the homography matrix? \searrow Answer: 3×3

$$
P^{\prime}=H \cdot P
$$

How many degrees of freedom does the homography matrix have? \nearrow Answer: 8

How do we compute the homography matrix?

The direct linear transform (DLT)

Create point correspondences

Given a set of matched feature points $\left\{p_{i}, p_{i}^{\prime}\right\}$ find the best estimate of H such that

$$
P^{\prime}=H \cdot P
$$

original image

target image

How many correspondences do we need?

Determining the homography matrix

Write out linear equation for each correspondence:

$$
P^{\prime}=H \cdot P \quad \text { or } \quad\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\alpha\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Determining the homography matrix

Write out linear equation for each correspondence:

$$
P^{\prime}=H \cdot P \quad \text { or } \quad\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\alpha\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Expand matrix multiplication:

$$
\begin{aligned}
x^{\prime} & =\alpha\left(h_{1} x+h_{2} y+h_{3}\right) \\
y^{\prime} & =\alpha\left(h_{4} x+h_{5} y+h_{6}\right) \\
1 & =\alpha\left(h_{7} x+h_{8} y+h_{9}\right)
\end{aligned}
$$

Determining the homography matrix

Write out linear equation for each correspondence:

$$
P^{\prime}=H \cdot P \quad \text { or } \quad\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\alpha\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Expand matrix multiplication:

$$
\begin{aligned}
x^{\prime} & =\alpha\left(h_{1} x+h_{2} y+h_{3}\right) \\
y^{\prime} & =\alpha\left(h_{4} x+h_{5} y+h_{6}\right) \\
1 & =\alpha\left(h_{7} x+h_{8} y+h_{9}\right)
\end{aligned}
$$

Divide out unknown scale factor:

$$
\begin{aligned}
x^{\prime}\left(h_{7} x+h_{8} y+h_{9}\right) & =\left(h_{1} x+h_{2} y+h_{3}\right) \\
y^{\prime}\left(h_{7} x+h_{8} y+h_{9}\right) & =\left(h_{4} x+h_{5} y+h_{6}\right)
\end{aligned}
$$

$$
\begin{gathered}
x^{\prime}\left(h_{7} x+h_{8} y+h_{9}\right)=\left(h_{1} x+h_{2} y+h_{3}\right) \\
y^{\prime}\left(h_{7} x+h_{8} y+h_{9}\right)=\left(h_{4} x+h_{5} y+h_{6}\right) \\
\text { Just rearrange the terms }
\end{gathered}
$$

$$
\begin{aligned}
& h_{7} x x^{\prime}+h_{8} y x^{\prime}+h_{9} x^{\prime}-h_{1} x-h_{2} y-h_{3}=0 \\
& h_{7} x y^{\prime}+h_{8} y y^{\prime}+h_{9} y^{\prime}-h_{4} x-h_{5} y-h_{6}=0
\end{aligned}
$$

Determining the homography matrix

Re-arrange terms:

$$
\begin{array}{r}
h_{7} x x^{\prime}+h_{8} y x^{\prime}+h_{9} x^{\prime}-h_{1} x-h_{2} y-h_{3}=0 \\
h_{7} x y^{\prime}+h_{8} y y^{\prime}+h_{9} y^{\prime}-h_{4} x-h_{5} y-h_{6}=0
\end{array}
$$

Rewrite in matrix form:
How many equations

$$
\mathbf{A}_{i} \boldsymbol{h}=\mathbf{0}
$$

$$
\mathbf{A}_{i}=\left[\begin{array}{ccccccccc}
-x & -y & -1 & 0 & 0 & 0 & x x^{\prime} & y x^{\prime} & x^{\prime} \\
0 & 0 & 0 & -x & -y & -1 & x y^{\prime} & y y^{\prime} & y^{\prime}
\end{array}\right]
$$

$$
\boldsymbol{h}=\left[\begin{array}{lllllllll}
h_{1} & h_{2} & h_{3} & h_{4} & h_{5} & h_{6} & h_{7} & h_{8} & h_{9}
\end{array}\right]^{\top}
$$

Determining the homography matrix

Stack together constraints from multiple point correspondences:

$$
\mathbf{A} \boldsymbol{h}=\mathbf{0}
$$

$$
\left[\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3} \\
h_{4} \\
h_{5} \\
h_{6} \\
h_{7} \\
h_{8} \\
h_{9}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Homogeneous linear least squares problem

Reminder: Determining unknown transformations

Affine transformation:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
p_{1} & p_{2} & p_{3} \\
p_{4} & p_{5} & p_{6}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Why can we drop the last line?

Vectorize transformation parameters:

Stack equations from point correspondences:
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{llllll}x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \\ x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1\end{array}\right]\left[\begin{array}{l}p_{1} \\ p_{2} \\ p_{3} \\ p_{4} \\ p_{5} \\ p_{6}\end{array}\right]$
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$

Notation in system form:
b
A
$A x=b$

Reminder: Determining unknown transformations

Convert the system to a linear least-squares problem:

$$
E_{\mathrm{LLS}}=\|\mathbf{A} \boldsymbol{x}-\boldsymbol{b}\|^{2}
$$

Expand the error:

$$
E_{\mathrm{LLS}}=\boldsymbol{x}^{\top}\left(\mathbf{A}^{\top} \mathbf{A}\right) \boldsymbol{x}-2 \boldsymbol{x}^{\top}\left(\mathbf{A}^{\top} \boldsymbol{b}\right)+\|\boldsymbol{b}\|^{2}
$$

Minimize the error:

$$
\text { Set derivative to } 0\left(\mathbf{A}^{\top} \mathbf{A}\right) \boldsymbol{x}=\mathbf{A}^{\top} \boldsymbol{b}
$$

$$
\text { Solve for } \mathrm{x} \boldsymbol{x}=\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \boldsymbol{b} \longleftarrow \quad \begin{gathered}
\text { Note: You almost never want to } \\
\text { compute the inverse of a matrix. }
\end{gathered}
$$

Determining the homography matrix

Stack together constraints from multiple point correspondences:

$$
\mathbf{A} \boldsymbol{h}=\mathbf{0}
$$

$$
\left[\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3} \\
h_{4} \\
h_{5} \\
h_{6} \\
h_{7} \\
h_{8} \\
h_{9}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Homogeneous linear least squares problem

- How do we solve this?

Determining the homography matrix

Stack together constraints from multiple point correspondences:

$$
\mathbf{A} \boldsymbol{h}=\mathbf{0}
$$

$$
\left[\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3} \\
h_{4} \\
h_{5} \\
h_{6} \\
h_{7} \\
h_{8} \\
h_{9}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Homogeneous linear least squares problem

- Solve with SVD

Singular Value Decomposition

Each column of V represents a solution for
$\mathbf{A} \boldsymbol{h}=\mathbf{0}$
where the singular value represents the reprojection error

Solving for H using DLT

${ }_{\text {Given }}\left\{\boldsymbol{x}_{i}, \boldsymbol{x}_{i}^{\prime}\right\} \quad$ solve for H such that $\boldsymbol{x}^{\prime}=\mathbf{H} \boldsymbol{x}$

1. For each correspondence, create 2×9 matrix $\underset{i}{i}$
2. Concatenate into single $2 n \mathrm{x} 9$ matrix
3. Compute SVD of $\mathbf{A}=\mathbf{1} \mathbf{N}^{\top}$
4. Store singular vector of the smallest singular value $\boldsymbol{h}=\boldsymbol{U}_{\hat{i}}$
5. Reshape to get [】

$$
\begin{aligned}
E_{\mathrm{TLS}} & =\sum_{i}\left(\boldsymbol{a}_{i} \boldsymbol{x}\right)^{2} \\
& =\|\mathbf{A} \boldsymbol{x}\|^{2} \quad \text { (matrix form) } \\
& \|\boldsymbol{x}\|^{2}=1 \quad \text { constraint }
\end{aligned}
$$

minimize

$$
\|\boldsymbol{A} \boldsymbol{x}\|^{2} \quad \frac{\text { (Rayleigh quotient) }}{\|\boldsymbol{A} \boldsymbol{x}\|^{2}} ⿻ \begin{array}{|r|}
\|\boldsymbol{x}\|^{2}=1
\end{array}
$$

Solution is the eigenvector corresponding to smallest eigenvalue of

$\mathbf{A}^{\top} \mathbf{A}$

Solution is the column of \mathbf{V} corresponding to smallest singular value
$\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$

Linear least squares estimation only works when the transform function is linear! (duh)

Also doesn't deal well with outliers.

Create point correspondences

original image

target image

How do we automate this step?

The image correspondence pipeline

1. Feature point detection

- Detect corners using the Harris corner detector.

2. Feature point description

- Describe features using the Multi-scale oriented patch descriptor.

3. Feature matching

The image correspondence pipeline

1. Feature point detection

- Detect corners using the Harris corner detector.

2. Feature point description

- Describe features using the Multi-scale oriented patch descriptor.

3. Feature matching

Random Sample Consensus (RANSAC)

Fitting lines
(with outliers)

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fitting lines (with outliers)

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fitting lines (with outliers)

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fitting lines
(with outliers)

$$
N_{I}=6
$$

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fitting lines
(with outliers)

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

How to choose parameters?

- Number of samples N
- Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Number of sampled points s
-Minimum number needed to fit the model
- Distance threshold δ
- Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
- Zero-mean Gaussian noise with std. dev. σ : $\mathrm{t}^{2}=3.84 \sigma^{2}$

$$
N=\frac{\log (1-p)}{\log \left(1-(1-e)^{s}\right)}
$$

proportion of outliers e						
s	5%	10%	20%	25%	30%	40%
2	2	3	5	6	7	11
3	3	4	7	9	11	19
4	3	5	9	13	17	34
5	4	6	12	17	26	72
6	4	7	16	24	37	97
7	4	8	20	33	54	146
8	5	9	26	44	78	272

Given two images...

find matching features (e.g., SIFT) and a translation transform

Matched points will usually contain bad correspondences

how should we estimate the transform?

LLS will find the 'average' transform

solution is corrupted by bad correspondences

Use RANSAC

How many correspondences to compute translation transform?

Need only one correspondence, to find translation model

Pick one correspondence, count inliers

Pick the model with the highest number of inliers!

Estimating homography using RANSAC

- RANSAC loop

1. Get point correspondences (randomly)

Estimating homography using RANSAC

- RANSAC loop

1. Get four point correspondences (randomly)
2. Compute H using

Estimating homography using RANSAC

- RANSAC loop

1. Get four point correspondences (randomly)
2. Compute H using DLT
3. Count

Estimating homography using RANSAC

- RANSAC loop

1. Get four point correspondences (randomly)
2. Compute H using DLT
3. Count inliers
4. Keep H if

Estimating homography using RANSAC

- RANSAC loop

1. Get four point correspondences (randomly)
2. Compute H using DLT
3. Count inliers
4. Keep H if largest number of inliers

- Recompute H using all inliers

Useful for...

The image correspondence pipeline

1. Feature point detection

- Detect corners using the Harris corner detector.

2. Feature point description

- Describe features using the Multi-scale oriented patch descriptor.

3. Feature matching and homography estimation

- Do both simultaneously using RANSAC.

References

Basic reading:

- Szeliski textbook, Sections 6.1.

Additional reading:

- Hartley and Zisserman, "Multiple View Geometry," Cambridge University Press 2003.
as usual when it comes to geometry and vision, this book is the best reference; Sections 2 and 4 in particular discuss everything about homography estimation

