Geometric camera models

16-385 Computer Vision

Course announcements

- Homework 2 is available online.
- Due on February 27 ${ }^{\text {th }}$ at 23:59.
- How many of you have read/started/finished HW2?
- There was some confusion about spring break.
- Course website has been adjusted.
- There is no homework due on spring break.
- Yannis has extra office hours this week:
- Wednesday 3-4 pm (right after class).
- Thursday 3-4 pm.
- Friday 2-3 pm (in addition to the usual 3-5 pm).

Overview of today's lecture

- Leftover from lecture 8: RANSAC.
- Some motivational imaging experiments.
- Pinhole camera.
- Accidental pinholes.
- Camera matrix.
- Perspective.
- Other camera models.
- Pose estimation.

Slide credits

Most of these slides were adapted from:

- Kris Kitani (15-463, Fall 2016).

Some slides inspired from:

- Fredo Durand (MIT).

Some motivational imaging experiments

Let's say we have a sensor...

... and an object we like to photograph

What would an image taken like this look like?

Bare-sensor imaging

Bare-sensor imaging

Bare-sensor imaging

Bare-sensor imaging

Bare-sensor imaging

All scene points contribute to all sensor pixels

Let's add something to this scene

What would an image taken like this look like?

Pinhole imaging

Pinhole imaging

Pinhole imaging

Pinhole imaging

Pinhole camera

Pinhole camera a.k.a. camera obscura

Pinhole camera a.k.a. camera obscura

First mention ...

First camera ...

Greek philosopher Aristotle (384 to 322 BC)

Pinhole camera terms

Pinhole camera terms

barrier (diaphragm)
image plane

Focal length

Focal length

What happens as we change the focal length?

Focal length

What happens as we change the focal length?

Focal length

What happens as we change the focal length?
object projection is half the size

Pinhole size

Ideal pinhole has infinitesimally small size

- In practice that is impossible.

Pinhole size

What happens as we change the pinhole diameter?

Pinhole size

What happens as we change the pinhole diameter?

Pinhole size

Pinhole size

What about light efficiency?

- What is the effect of doubling the focal length?

What about light efficiency?

The lens camera

Lenses map "bundles" of rays from points on the scene to the sensor.

How does this mapping work exactly?

The pinhole camera

The lens camera

The pinhole camera

Central rays propagate in the same way for both models!

Describing both lens and pinhole cameras

We can derive properties and descriptions that hold for both camera models if:

- We use only central rays.
- We assume the lens camera is in focus.

Important difference: focal length

In a pinhole camera, focal length is distance between aperture and sensor

Important difference: focal length

In a lens camera, focal length is distance where parallel rays intersect

Describing both lens and pinhole cameras

We can derive properties and descriptions that hold for both camera models if:

- We use only central rays.
- We assume the lens camera is in focus.
- We assume that the focus distance of the lens camera is equal to the focal length of the pinhole camera.

Remember: focal length f refers to different things for lens and pinhole cameras.

- In this lecture, we use it to refer to the aperture-sensor distance, as in the pinhole camera case.

Accidental pinholes

What does this image say about the world outside?

Accidental pinhole camera

Antonio Torralba, William T. Freeman

Computer Science and Artificial Intelligence Laboratory (CSAIL)

Accidental pinhole camera

window is an aperture
projected pattern on the wall

upside down

window with smaller gap

view outside window

Pinhole cameras

What are we imaging here?

Camera matrix

The camera as a coordinate transformation

The camera as a coordinate transformation

A camera is a mapping from:
the 3D world
to:

What are the dimensions of each variable?

The camera as a coordinate transformation

$\boldsymbol{x}=\mathbf{P X}$

$$
\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

homogeneous
image coordinates
3×1
camera matrix
3×4
homogeneous world coordinates
4×1

The pinhole camera

The (rearranged) pinhole camera

The (rearranged) pinhole camera

What is the equation for image coordinate \mathbf{x} in terms of \mathbf{X} ?

The 2D view of the (rearranged) pinhole camera

What is the equation for image coordinate x in terms of X ?

The 2D view of the (rearranged) pinhole camera

The (rearranged) pinhole camera

What is the camera matrix P for a pinhole camera?

$$
\boldsymbol{x}=\mathbf{P X}
$$

The pinhole camera matrix

Relationship from similar triangles:

$$
\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{\top} \mapsto\left[\begin{array}{ll}
f X / Z & f Y / Z
\end{array}\right]^{\top}
$$

General camera model:

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

What does the pinhole camera projection look like?

$$
\mathbf{P}=\left[\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]
$$

The pinhole camera matrix

Relationship from similar triangles:

$$
\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{\top} \mapsto\left[\begin{array}{ll}
f X / Z & f Y / Z
\end{array}\right]^{\top}
$$

General camera model:

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

What does the pinhole camera projection look like?

$$
\mathbf{P}=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Generalizing the camera matrix

In general, the camera and image have different coordinate systems.

- \boldsymbol{X} world point

Generalizing the camera matrix

In particular, the camera origin and image origin may be different:

How does the camera matrix change?

$$
\mathbf{P}=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Generalizing the camera matrix

In particular, the camera origin and image origin may be different:

How does the camera matrix change?

$$
\mathbf{P}=\left[\begin{array}{cccc}
f & 0 & p_{x} & 0 \\
0 & f & p_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

shift vector transforming camera origin to image origin

Camera matrix decomposition

We can decompose the camera matrix like this:

$$
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc:c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Camera matrix decomposition

We can decompose the camera matrix like this:

$$
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll:l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

(homogeneous) transformation from 2D to 2D, accounting for not unit focal length and origin shift
(homogeneous) projection from 3D to 2 D , assuming image plane at $\mathrm{z}=1$ and shared camera/image origin

Also written as: $\mathbf{P}=\mathbf{K}[\mathbf{I} \mid \mathbf{0}]$ where $\mathbf{K}=\left[\begin{array}{ccc}f & 0 & p_{x} \\ 0 & f & p_{y} \\ 0 & 0 & 1\end{array}\right]$

Generalizing the camera matrix

In general, there are three, generally different, coordinate systems.

We need to know the transformations between them.

World-to-camera coordinate system transformation

World-to-camera coordinate system transformation

World-to-camera coordinate system transformation

$$
\begin{gathered}
\left(\widetilde{\boldsymbol{X}}_{\boldsymbol{w}}-\widetilde{\boldsymbol{C}}\right) \\
\text { translate }
\end{gathered}
$$

World-to-camera coordinate system transformation

$$
\underset{\text { rotate }}{\boldsymbol{R} \cdot\left(\widetilde{\boldsymbol{X}}_{\boldsymbol{w}}-\widetilde{\boldsymbol{C}}\right)} \underset{\text { translate }}{ }
$$

Modeling the coordinate system transformation

In heterogeneous coordinates, we have:

$$
\widetilde{\mathbf{X}}_{\mathbf{c}}=\mathbf{R} \cdot\left(\widetilde{\mathbf{X}}_{\mathbf{w}}-\tilde{\mathbf{C}}\right)
$$

How do we write this transformation in homogeneous coordinates?

Modeling the coordinate system transformation

In heterogeneous coordinates, we have:

$$
\widetilde{\mathbf{X}}_{\mathbf{c}}=\mathbf{R} \cdot\left(\widetilde{\mathbf{X}}_{\mathbf{w}}-\tilde{\mathbf{C}}\right)
$$

In homogeneous coordinates, we have:

$$
\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R C} \\
\mathbf{0} & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right] \quad \text { or } \quad \mathbf{X}_{\mathbf{c}}=\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R} \tilde{\mathbf{C}} \\
\mathbf{0} & 1
\end{array}\right] \mathbf{X}_{\mathbf{W}}
$$

Incorporating the transform in the camera matrix

The previous camera matrix is for homogeneous 3D coordinates in camera coordinate system:

$$
\mathbf{x}=\mathbf{P} X_{c}=K[I \mid 0] X_{c}
$$

We also just derived:

$$
X_{c}=\left[\begin{array}{cc}
R & -R \tilde{C} \\
0 & 1
\end{array}\right] X_{w}
$$

Putting it all together

We can write everything into a single projection:

$$
\mathbf{x}=\mathbf{P} \mathbf{X}_{\mathbf{w}}
$$

The camera matrix now looks like:

$$
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right][\mathbf{R}:-\mathbf{R C}]
$$

intrinsic parameters (3×3):
 correspond to camera internals (sensor not at $\mathrm{f}=1$ and origin shift)
extrinsic parameters (3x4):
correspond to camera externals (world-to-image transformation)

General pinhole camera matrix

We can decompose the camera matrix like this:

$$
\underset{\text { (translate first then rotate) }}{\mathbf{P}=\mathbf{K} \mathbf{R}[\mathbf{I} \mid-\mathbf{C}]}
$$

Another way to write the mapping:

$$
\begin{aligned}
& \mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& \text { where } \quad \mathbf{t}=-\mathbf{R C}
\end{aligned}
$$

(rotate first then translate)

General pinhole camera matrix

$\mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}]$

$$
\begin{gathered}
\left.\mathbf{P}=\underset{\left.\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]}{\text { intrinsic }} \begin{array}{c}
{\left[\begin{array}{lll:}
r_{1} & r_{2} & r_{3} \\
r_{1} & t_{1} \\
r_{4} & r_{5} & r_{6} \\
r_{7} & r_{8} & r_{9} \\
t_{2}
\end{array}\right.} \\
t_{3}
\end{array}\right] \\
\begin{array}{c}
\text { extrinsic } \\
\text { parameters }
\end{array} \\
\mathbf{R}=\left[\begin{array}{lll}
r_{1} & r_{2} & r_{3} \\
r_{4} & r_{5} & r_{6} \\
r_{7} & r_{8} & r_{9}
\end{array}\right]
\end{gathered} \quad \begin{gathered}
\mathbf{t}=\left[\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right]
\end{gathered}
$$

Recap

What is the size and meaning of each term in the camera matrix?

Recap

What is the size and meaning of each term in the camera matrix?

Recap

What is the size and meaning of each term in the camera matrix?

Recap

What is the size and meaning of each term in the camera matrix?

Recap

What is the size and meaning of each term in the camera matrix?

Quiz

The camera matrix relates what two quantities?

Quiz

The camera matrix relates what two quantities?

$\boldsymbol{x}=\mathbf{P X}$

homogeneous 3D points to 2D image points

Quiz

The camera matrix relates what two quantities?

$\partial C=\square$

homogeneous 3D points to 2D image points

The camera matrix can be decomposed into?

Quiz

The camera matrix relates what two quantities?

$\boldsymbol{x}=\mathbf{P X}$

homogeneous 3D points to 2D image points

The camera matrix can be decomposed into?

$\mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}]$

intrinsic and extrinsic parameters

More general camera matrices

The following is the standard camera matrix we saw.

$$
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right] \quad[\mathbf{R}:-\mathbf{R C}]
$$

More general camera matrices

CCD camera: pixels may not be square.

$$
\mathbf{P}=\left[\begin{array}{ccc}
\alpha_{x} & 0 & p_{x} \\
0 & \alpha_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right][\mathbf{R}:-\mathbf{R C}]
$$

How many degrees of freedom?

More general camera matrices

CCD camera: pixels may not be square.

$$
\mathbf{P}=\left[\begin{array}{ccc}
\alpha_{x} & 0 & p_{x} \\
0 & \alpha_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right][\mathbf{R}:-\mathbf{R C}]
$$

How many degrees of freedom?
10 DOF

More general camera matrices

Finite projective camera: sensor be skewed.

$$
\mathbf{P}=\left[\begin{array}{ccc}
\alpha_{x} & s & p_{x} \\
0 & \alpha_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right][\mathbf{R}:-\mathbf{R C}]
$$

How many degrees of freedom?

More general camera matrices

Finite projective camera: sensor be skewed.

$$
\mathbf{P}=\left[\begin{array}{ccc}
\alpha_{x} & s & p_{x} \\
0 & \alpha_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
\mathbf{R} & -\mathbf{R C}
\end{array}\right]
$$

How many degrees of freedom?
11 DOF

Perspective distortion

Finite projective camera

$$
\left.\mathbf{P}=\left[\begin{array}{ccc}
\alpha_{x} & s & p_{x} \\
0 & \alpha_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right] \begin{array}{cc}
\mathbf{R} & -\mathbf{R C}
\end{array}\right]
$$

What does this matrix look like if the camera and world have the same coordinate system?

Finite projective camera

The pinhole camera and all of the more general cameras we have seen so far have "perspective distortion".

$$
\mathbf{P}=\left[\begin{array}{ccc}
\alpha_{x} & s & p_{x} \\
0 & \alpha_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Perspective projection from (homogeneous) 3D to 2D coordinates

The (rearranged) pinhole camera

$$
\boldsymbol{x}=\mathbf{P X}
$$

The 2D view of the (rearranged) pinhole camera

Perspective distortion: magnification changes with
depth

Perspective projection in 2D
$\left[\begin{array}{lll}X & Y & Z\end{array}\right]^{\top} \mapsto\left[\begin{array}{ll}f X / Z & f Y / Z\end{array}\right]^{\top}$

Forced perspective

The Ames room illusion

The Ames room illusion

The arrow illusion

Magnification depends on depth

What happens as we change the focal length?

Magnification depends on focal length

What if...

What if...

Perspective distortion

long focal length

mid focal length

short focal length

Perspective distortion

Vertigo effect

Named after Alfred Hitchcock's movie

- also known as "dolly zoom"

Vertigo effect

How would you create this effect?

Other camera models

What if...

camera is close to object and has small focal length

perspective

weak perspective
camera is far from object and has large focal length
increasing focal length

Different cameras

perspective camera
weak perspective camera

Weak perspective vs perspective camera

Comparing camera matrices

Let's assume that the world and camera coordinate systems are the same.

- The perspective camera matrix can be written as:

$$
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- What would the matrix of the weak perspective camera look like?

Comparing camera matrices

Let's assume that the world and camera coordinate systems are the same.

- The perspective camera matrix can be written as:

$$
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- The weak perspective camera matrix can be written as:

$$
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & Z_{o}
\end{array}\right]
$$

Comparing camera matrices

Let's assume that the world and camera coordinate systems are the same.

- The finite projective camera matrix can be written as:

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

where we now have the more general intrinsic matrix

- The affine camera matrix can be written as:

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & Z_{o}
\end{array}\right]
$$

$$
\mathbf{K}=\left[\begin{array}{ccc}
\alpha_{x} & s & p_{x} \\
0 & \alpha_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right]
$$

In both cameras, we can incorporate extrinsic parameters same as we did before.

When can we assume a weak perspective camera?

1. When the scene (or parts of it) is very far away.

Weak perspective projection applies to the mountains.

When can we assume a weak perspective camera?

2. When we use a telecentric lens.

Orthographic camera

Special case of weak perspective camera where:

- constant magnification is equal to 1 .
- there is no shift between camera and image origins.
- the world and camera coordinate systems are the same.

What is the camera matrix in this case?

Orthographic camera

Special case of weak perspective camera where:

- constant magnification is equal to 1 .
- there is no shift between camera and image origins.
- the world and camera coordinate systems are the same.

Orthographic projection using a telecentric lens

How do we make the telecentric lens act as an orthographic camera?

Many other types of cameras

(e) perspective

(f) object-centered

Geometric camera calibration

	Structure (scene geometry)	Motion (camera geometry)	Measurements
Camera Calibration (a.k.a. Pose Estimation)	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D coorespondences
Reconstruction	estimate	estimate	2D to 2D coorespondences

Pose Estimation

Given a single image, estimate the exact position of the photographer

Geometric camera calibration

Given a set of matched points
$\left\{\mathbf{X}_{i}, \boldsymbol{x}_{i}\right\}$
$\begin{array}{cc}\text { point in 3D point in the } \\ \text { space } & \text { image }\end{array}$
and camera model

Find the (pose) estimate of

We'll use a perspective camera model for pose estimation

Same setup as homography estimation
 (slightly different derivation here)

Mapping between 3D point and image points

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=} & {\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] } \\
& \text { What are the unknowns? }
\end{aligned}
$$

Mapping between 3D point and image points

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{llll}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ll}
-\boldsymbol{p}_{1}^{\top}- \\
- & \boldsymbol{p}_{2}^{\top}- \\
- & \boldsymbol{p}_{3}^{\top}-
\end{array}\right]\left[\begin{array}{c}
\mid \\
\boldsymbol{X} \\
\mid
\end{array}\right]}
\end{aligned}
$$

Heterogeneous coordinates

$$
x^{\prime}=\frac{\boldsymbol{p}_{1}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}} \quad y^{\prime}=\frac{\boldsymbol{p}_{2}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}}
$$

(non-linear relation between coordinates)
How can we make these relations linear?

How can we make these relations linear?

$$
x^{\prime}=\frac{\boldsymbol{p}_{1}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}} \quad y^{\prime}=\frac{\boldsymbol{p}_{2}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}}
$$

Make them linear with algebraic manipulation...

$$
\begin{aligned}
& \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0 \\
& \boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0
\end{aligned}
$$

Now we can setup a system of linear equations with multiple point correspondences

$$
\begin{aligned}
& \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0 \\
& \boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0
\end{aligned}
$$

How do we proceed?

$$
\begin{aligned}
& \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0 \\
& \boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0
\end{aligned}
$$

$$
\text { In matrix form } \ldots\left[\begin{array}{ccc}
\boldsymbol{X}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}^{\top} \\
\mathbf{0} & \boldsymbol{X}^{\top} & -y^{\prime} \boldsymbol{X}^{\top}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]=\mathbf{0}
$$

How do we proceed?

$$
\begin{aligned}
& \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0 \\
& \boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0
\end{aligned}
$$

In matrix form $\ldots\left[\begin{array}{ccc}\boldsymbol{X}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}^{\top} \\ \mathbf{0} & \boldsymbol{X}^{\top} & -y^{\prime} \boldsymbol{X}^{\top}\end{array}\right]\left[\begin{array}{l}\boldsymbol{p}_{1} \\ \boldsymbol{p}_{2} \\ \boldsymbol{p}_{3}\end{array}\right]=\mathbf{0}$

For N points ...

$$
\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{1}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{1}^{\top} & -y^{\prime} \boldsymbol{X}_{1}^{\top} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{N}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{\mathbf{N}}^{\top} & -u^{\prime} \boldsymbol{X}_{N}^{\top}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]=\mathbf{0}
$$

How do we solve this system?

Solve for camera matrix by

$$
\begin{aligned}
\hat{\boldsymbol{x}} & =\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2} \text { subject to }\|\boldsymbol{x}\|^{2}=1 \\
\mathbf{A}=\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{1}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{1}^{\top} & -y^{\prime} \boldsymbol{X}_{1}^{\top} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{N}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{N}^{\top} & -y^{\prime} \boldsymbol{X}_{N}^{\top}
\end{array}\right] & \boldsymbol{x}=\left[\begin{array}{l}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]
\end{aligned}
$$

Solve for camera matrix by

$$
\begin{aligned}
\hat{\boldsymbol{x}} & =\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2} \text { subject to }\|\boldsymbol{x}\|^{2}=1 \\
\mathbf{A}=\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{1}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{1}^{\top} & -y^{\prime} \boldsymbol{X}_{1}^{\top} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{N}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{N}^{\top} & -y^{\prime} \boldsymbol{X}_{N}^{\top}
\end{array}\right] & \boldsymbol{x}=\left[\begin{array}{l}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]
\end{aligned}
$$

Solution \mathbf{x} is the column of \mathbf{V} corresponding to smallest singular value of
$\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$

Solve for camera matrix by

$$
\begin{aligned}
\hat{\boldsymbol{x}} & =\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2} \text { subject to }\|\boldsymbol{x}\|^{2}=1 \\
\mathbf{A}=\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{1}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{1}^{\top} & -y^{\prime} \boldsymbol{X}_{1}^{\top} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{N}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{N}^{\top} & -y^{\prime} \boldsymbol{X}_{N}^{\top}
\end{array}\right] & \boldsymbol{x}=\left[\begin{array}{c}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]
\end{aligned}
$$

Equivalently, solution \boldsymbol{x} is the Eigenvector corresponding to smallest Eigenvalue of
$\mathbf{A}^{\top} \mathbf{A}$

$$
\text { Now we have: } \quad \mathbf{P}=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]
$$

Are we done?

Almost there $\ldots \quad \mathbf{P}=\left[\begin{array}{cccc}p_{1} & p_{2} & p_{3} & p_{4} \\ p_{5} & p_{6} & p_{7} & p_{8} \\ p_{9} & p_{10} & p_{11} & p_{12}\end{array}\right]$
How do you get the intrinsic and extrinsic parameters from the projection matrix?

Decomposition of the Camera Matrix

$$
\mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]
$$

Decomposition of the Camera Matrix

$$
\begin{aligned}
\mathbf{P}= & {\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] } \\
& \mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}]
\end{aligned}
$$

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find intrinsic \mathbf{K} and rotation \mathbf{R}

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find intrinsic \mathbf{K} and rotation \mathbf{R}

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find intrinsic \mathbf{K} and rotation \mathbf{R}

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find the camera center \mathbf{C}
$\mathbf{P c}=\mathbf{0}$
SVD of P!
c is the Eigenvector corresponding to smallest Eigenvalue

Find intrinsic \mathbf{K} and rotation \mathbf{R}

$$
\mathbf{M}=\mathbf{K R}
$$

Any useful properties of K and R we can use?

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find intrinsic \mathbf{K} and rotation \mathbf{R}
$\mathbf{M}=\mathbf{K R}$

right upper orthogonal triangle

How do we find K and R ?

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find intrinsic \mathbf{K} and rotation \mathbf{R}

$$
\mathbf{M}=\mathbf{K R}
$$

QR decomposition

Geometric camera calibration

Given a set of matched points
$\left\{\mathbf{X}_{i}, \boldsymbol{x}_{i}\right\}$
point in 3D point in the
space image
and camera model

Find the (pose) estimate of

We'll use a perspective camera model for pose estimation

Calibration using a reference object

Place a known object in the scene:

- identify correspondences between image and scene
- compute mapping from scene to image

Issues:

- must know geometry very accurately
- must know 3D->2D correspondence

Geometric camera calibration

Advantages:

- Very simple to formulate.
- Analytical solution.

Disadvantages:

- Doesn't model radial distortion.
- Hard to impose constraints (e.g., known f).
- Doesn't minimize the correct error function.

For these reasons, nonlinear methods are preferred

- Define error function E between projected 3D points and image positions
- E is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques

Minimizing reprojection error

Radial distortion

What causes this distortion?

no distortion

barrel distortion

pincushion distortion

Radial distortion model

Ideal:
Distorted:

$$
\begin{array}{ll}
x^{\prime}=f \frac{x}{z} & x^{\prime \prime}=\frac{1}{\lambda} x, \\
y^{\prime}=f \frac{y}{z} & y^{\prime \prime}=\frac{1}{\lambda} y^{\prime}
\end{array}
$$

Minimizing reprojection error with radial distortion

Correcting radial distortion

Alternative: Multi-plane calibration

Advantages:

- Only requires a plane
- Don't have to know positions/orientations
- Great code available online!
- Matlab version: http://www.vision.caltech.edu/bouguetj/calib doc/index.html
- Also available on OpenCV.

Disadvantage: Need to solve non-linear optimization problem.

Step-by-step demonstration

Calibration images

Step-by-step demonstration

Click on the four extreme corners of the rectangular pattern.

Cick on the four extreme cormers of the rectangular patten (frst corner $=$ origin). Image 1

Step-by-step demonstration

Step-by-step demonstration

Step-by-step demonstration

Extrinsic parameters

What does it mean to "calibrate a camera"?

What does it mean to "calibrate a camera"?

Many different ways to calibrate a camera:

- Radiometric calibration.
- Color calibration.
- Geometric calibration.

We'll briefly discuss radiometric and color calibration in later lectures. For the rest, see 15-463/663/862.

- Noise calibration.
- Lens (or aberration) calibration.

3D locations of planar marker features are known in advance

3D content prepared in advance

Simple AR program

1. Compute point correspondences (2D and AR tag)
2. Estimate the pose of the camera \mathbf{P}
3. Project 3D content to image plane using \mathbf{P}

References

Basic reading:

- Szeliski textbook, Section 2.1.5, 6.2.

Additional reading:

- Hartley and Zisserman, "Multiple View Geometry in Computer Vision," Cambridge University Press 2004.
chapter 6 of this book has a very thorough treatment of camera models.
- Torralba and Freeman, "Accidental Pinhole and Pinspeck Cameras," CVPR 2012.
the eponymous paper discussed in the slides.

