
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

The course that gives CMU its “Zip”!

Course Overview

15-213/15-513:
Introduction to Computer Systems
1st Lecture, May 17, 2022 Instructors:

Zack Weinberg
Kyle Liang

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Overview

⬛ Introductions

⬛ Big Picture

▪ Course theme

▪ Five realities

▪ How the course fits into the CS/ECE/INI curriculum

⬛ Academic integrity

⬛ Logistics and Policies

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Carnegie Mellon

Instructors

Zack Weinberg Kyle Liang

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

The Big Picture

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

⬛Why take this course?

⬛What do you want to learn?

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Theme:
(Systems) Knowledge is Power!
⬛Systems Knowledge

▪ How hardware (processors, memories, disk drives, network infrastructure)
plus software (operating systems, compilers, libraries, network protocols)
combine to support the execution of application programs

▪ How you as a programmer can best use these resources

⬛Useful outcomes from taking 213/513

▪ Become more effective programmers

▪ Able to find and eliminate bugs efficiently

▪ Able to understand and tune for program performance

▪ Prepare for later “systems” classes in CS & ECE

▪ Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems, Storage Systems, etc.

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

It’s Important to Understand How Things Work

⬛Why do I need to know this stuff?

▪ Abstraction is good, but don’t forget reality

⬛Most CS and CE courses emphasize abstraction
▪ Abstract data types

▪ Asymptotic analysis

⬛These abstractions have limits

▪ Especially in the presence of bugs

▪ Need to understand details of underlying implementations

▪ Sometimes the abstract interfaces don’t provide the level of control or
performance you need

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #1:
Ints are not Integers, Floats are not Reals
⬛Example 1: Is x2 ≥ 0?

▪ Float’s: Yes!

▪ Int’s:

▪ 40000 * 40000 --> 1600000000

▪ 50000 * 50000 --> ?

⬛Example 2: Is (x + y) + z = x + (y + z)?
▪ Unsigned & Signed Int’s: Yes!

▪ Float’s:

▪ (1e20 + -1e20) + 3.14 --> 3.14

▪ 1e20 + (-1e20 + 3.14) --> ??
Source: xkcd.com/571

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Computer Arithmetic

⬛Does not generate random values

▪ Arithmetic operations have important mathematical properties

⬛Cannot assume all “usual” mathematical properties
▪ Due to finiteness of representations

▪ Integer operations satisfy “ring” properties

▪ Commutativity, associativity, distributivity

▪ Floating point operations satisfy “ordering” properties

▪ Monotonicity, values of signs

⬛Observation

▪ Need to understand which abstractions apply in which contexts

▪ Important issues for compiler writers and serious application programmers

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #2:
You’ve Got to Know Assembly
⬛Chances are, you’ll never write programs in assembly

▪ Compilers are much better & more patient than you are

⬛But: Understanding assembly is key to machine-level execution
model
▪ Behavior of programs in presence of bugs

▪ High-level language models break down

▪ Tuning program performance

▪ Understand optimizations done / not done by the compiler

▪ Understanding sources of program inefficiency

▪ Implementing system software

▪ Compiler has machine code as target

▪ Operating systems must manage process state

▪ Creating / fighting malware

▪ x86 assembly is the language of choice!

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

⬛Memory is not unbounded

▪ It must be allocated and managed

▪ Many applications are memory dominated

⬛Memory referencing bugs especially pernicious
▪ Effects are distant in both time and space

⬛Memory performance is not uniform

▪ Cache and virtual memory effects can greatly affect program performance

▪ Adapting program to characteristics of memory system can lead to major
speed improvements

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Bug Example

▪ Result is system specific

fun(0) --> 3.14

fun(1) --> 3.14

fun(2) --> 3.1399998664856

fun(3) --> 2.00000061035156

fun(4) --> 3.14

fun(6) --> Segmentation fault

typedef struct {

int a[2];

double d;

} struct_t;

double fun(int i) {

volatile struct_t s;

s.d = 3.14;

s.a[i] = 1073741824; /* Possibly out of bounds */

return s.d;

}

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Bug Example
typedef struct {

int a[2];

double d;

} struct_t;

fun(0) --> 3.14

fun(1) --> 3.14

fun(2) --> 3.1399998664856

fun(3) --> 2.00000061035156

fun(4) --> 3.14

fun(6) --> Segmentation fault

Location accessed by

fun(i)

Explanation:

Critical State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Errors

⬛C and C++ do not provide any memory protection

▪ Out of bounds array references

▪ Invalid pointer values

▪ Abuses of malloc/free

⬛Can lead to nasty bugs

▪ Whether or not bug has any effect depends on system and compiler

▪ Action at a distance

▪ Corrupted object logically unrelated to one being accessed

▪ Effect of bug may be first observed long after it is generated

⬛How can I deal with this?
▪ Program in Java, Ruby, Python, ML, …

▪ Understand what possible interactions may occur

▪ Use or develop tools to detect referencing errors (e.g. Valgrind)

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #4: There’s more to
performance than asymptotic complexity

⬛Constant factors matter too!

⬛And even exact op count does not predict performance

▪ Easily see 10:1 performance range depending on how code written

▪ Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

⬛Must understand system to optimize performance
▪ How programs compiled and executed

▪ How to measure program performance and identify bottlenecks

▪ How to improve performance without destroying code modularity and
generality

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory System Performance Example

⬛Hierarchical memory organization

⬛Performance depends on access patterns

▪ Including how step through multi-dimensional array

void copyji(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)

dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)

dst[i][j] = src[i][j];

}

81.8ms4.3ms
2.0 GHz Intel Core i7

Haswell

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Why The Performance Differs

copyij

copyji

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #5:
Computers do more than execute programs

⬛They need to get data in and out

▪ I/O system critical to program reliability and performance

⬛They communicate with each other over networks
▪ Many system-level issues arise in presence of network

▪ Concurrent operations by autonomous processes

▪ Coping with unreliable media

▪ Cross platform compatibility

▪ Complex performance issues

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Perspective

⬛Most Systems Courses are Builder-Centric

▪ Computer Architecture

▪ Design pipelined processor in Verilog

▪ Operating Systems

▪ Implement sample portions of operating system

▪ Compilers

▪ Write compiler for simple language

▪ Networking

▪ Implement and simulate network protocols

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Perspective (Cont.)

⬛Our Course is Programmer-Centric

▪ By knowing more about the underlying system, you can be more effective
as a programmer

▪ Enable you to

▪ Write programs that are more reliable and efficient

▪ Incorporate features that require hooks into OS

– E.g., concurrency, signal handlers

▪ Cover material in this course that you won’t see elsewhere

▪ Not just a course for dedicated hackers

▪ We bring out the hidden hacker in everyone!

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Role within CS/ECE Curriculum

CS 410
Operating
Systems

CS 411
Compilers

Processes
Mem. Mgmt

CS 441
Networks

Network
Protocols

ECE 447
Architecture

ECE 349
Embedded

Systems

CS 412
OS Practicum

CS 122
Imperative
Programming

CS 415
Databases

Data Reps.
Memory Model

ECE 340
Digital

Computation

Machine
Code Arithmetic

ECE 348
Embedded

System Eng.

Foundation of Computer Systems
Underlying principles for hardware,
software, and networking

Execution Model
Memory System

213/513

ECE 545/549
Capstone

CS 440
Distribute

d
systems

Network
Prog
Concurrency

CS 418
Parallel

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Academic Integrity
Please pay close attention, especially
if this is your first semester at CMU

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating/Plagiarism: Description

⬛Unauthorized use of information

▪ Borrowing code: by copying, retyping, looking at a file

▪ Describing: verbal description of code from one person to another.

▪ Searching the Web for solutions

▪ Copying code from a previous course or online solution

▪ Reusing your code from a previous semester (here or elsewhere)

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating/Plagiarism: Description (cont.)

⬛Unauthorized supplying of information

▪ Providing copy: Giving a copy of a file to someone

▪ Providing access:

▪ Putting material in unprotected directory

▪ Putting material in unprotected code repository (e.g., Github)

▪ Applies to this term and the future

▪ There is no statute of limitations for academic integrity violations

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating/Plagiarism: Description

⬛What is NOT cheating?

▪ Explaining how to use systems or tools

▪ Helping others with high-level design issues

▪ Using code supplied by us

▪ Using code from the CS:APP web site

⬛See the course syllabus for details.
▪ Ignorance is not an excuse

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating: Consequences
⬛ Penalty for cheating:

▪ Best case: -100% for assignment

▪ You would be better off to turn in nothing
▪ Worst case: Removal from course with failing grade

▪ This is the default

▪ Permanent mark on your record
▪ Loss of respect by you, the instructors and your colleagues

▪ If you do cheat – come clean asap!

⬛Detection of cheating:
▪ We have sophisticated tools for detecting code plagiarism

▪ In Fall 2015, 20 students were caught cheating and failed the course.
▪ Some were expelled from the University

▪ In January 2016, 11 students were penalized for cheating violations that occurred as far
back as Spring 2014.

⬛Don’t do it!
▪ Manage your time carefully
▪ Ask the staff for help when you get stuck

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Some Concrete Examples:
⬛This is Cheating:

▪ Searching the internet with the phrase 15-213, 15213, 213, 18213,
malloclab, etc.

▪ That’s right, just entering it in a search engine

▪ Looking at someone’s code on the computer next to yours

▪ Giving your code to someone else, now or in the future

▪ Posting your code in a publicly accessible place on the Internet, now or in
the future

▪ Hacking the course infrastructure

⬛This is OK (and encouraged):

▪ Googling a man page for fputs

▪ Asking a friend for help with gdb

▪ Asking a TA or course instructor for help, showing them your code, …

▪ Looking in the textbook for a code example

▪ Talking about a (high-level) approach to the lab with a classmate

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

How it Feels: Student and Instructor

⬛ Fred is desperate. He can’t get his code to work and the deadline is drawing
near. In panic and frustration, he searches the web and finds a solution
posted by a student at U. Oklahoma on Github. He carefully strips out the
comments and inserts his own. He changes the names of the variables and
functions. Phew! Got it done!

⬛ The course staff run checking tools that compare all submitted solutions to
the solutions from this and other semesters, along with ones that are on the
Web.

▪ Remember: We are as good at web searching as you are

⬛Meanwhile, Fred has had an uneasy feeling: Will I get away with it? Why
does my conscience bother me?

⬛ Fred gets email from an instructor: “Please see me tomorrow at 9:30 am.”

▪ Fred does not sleep well that night

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

How it Feels: Student and Instructor

⬛ The instructor feels frustrated. His job is to help students learn, not to be
police. Every hour he spends looking at code for cheating is time that he
cannot spend providing help to students. But, these cases can’t be
overlooked

⬛At the meeting:

▪ Instructor: “Explain why your code looks so much like the code on Github.”

▪ Fred: “Gee, I don’t know. I guess all solutions look pretty much alike.”

▪ Instructor: “I don’t believe you. I am going to file an academic integrity violation.”

▪ Fred will have the right to appeal, but the instructor does not need him to admit
his guilt in order to penalize him.

⬛Consequences

▪ Fred may (most likely) will be given a failing grade for the course

▪ Fred will be reported to the university

▪ A second AIV will lead to a disciplinary hearing

▪ Fred will go through the rest of his life carrying a burden of shame

▪ The instructor will experience a combination of betrayal and distress

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

A Scenario: Cheating or Not?
Alice is working on malloc lab and is just plain stuck. Her code is
seg faulting and she doesn't know why. It is only 2 days until
malloc lab is due and she has 3 other assignments due this same
week. She is in the cluster.

Bob is sitting next to her. He is pretty much done.

Sitting next to Bob is Charlie. He is also stuck.

⬛1. Charlie gets up for a break and Bob makes a printout of his own
code and leaves it on Charlie’s chair.

▪ Who cheated: Charlie? Bob?

⬛2. Charlie finds the copy of Bob’s malloc code, looks it over, and
then copies one function, but changes the names of all the
variables.
▪ Who cheated: Charlie? Bob?

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Another Scenario
Alice is working on malloc lab and is just plain stuck. Her code is seg faulting and
she doesn't know why. It is only 2 days until malloc lab is due and she has 3
other assignments due this same week. She is in the cluster.

Bob is sitting next to her. He is pretty much done.

Sitting next to Bob is Charlie. He is also stuck.

⬛1. Bob offers to help Alice and they go over her code together.

▪ Who cheated: Bob? Alice?

⬛2. Bob gets up to go to the bathroom and Charlie looks over at his
screen to see how Bob implemented his free list.

▪ Who cheated: Charlie? Bob?

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Another Scenario (cont.)
⬛3. Alice is having trouble with GDB. She asks Bob how to set a

breakpoint, and he shows her.

▪ Who cheated: Bob? Alice?

⬛4. Charlie goes to a TA and asks for help

▪ Who cheated: Charlie?

⬛If you are uncertain which of these constitutes cheating, and
which do not, please read the syllabus carefully. If you’re still
uncertain, ask one of the staff

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Version Control: Your Good Friend
⬛All labs will be distributed via GitHub Classroom

⬛Must be used by all students

⬛Students must commit early and often

⬛If a student is accused of cheating (plagiarism), we will consult
the GIT server and look for a reasonable commit history

⬛Missing GIT history will count against you

⬛Please make sure you have one!

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Logistics

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Carnegie Mellon

15-213 and 15-513

⬛ 15-213/18-213

▪ Only undergraduates

▪ 12 units

▪ In-person classes, TWRF 12:20-1:40 (see website)

⬛ 15-513

▪ Only Masters students

▪ 6 units

▪ Lectures by video (on the website)

▪ Less support available; we assume this is a refresher for you

▪ If you have the proper background, take the course now and accelerate your program

▪ If this is all new to you, take it for 12 credits in the Fall

⬛ Everything else is the same for all the courses

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Lecture Style

⬛You are going to be active learners

▪ Come prepared to class based on the readings / videos

▪ Practice and gain assessment feedback in class

▪ Immediately address misconceptions with expert intervention

▪ You will work in teams

⬛If you have questions or concerns, please come by
▪ Or ask your advisor

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

“Quiz” time!

(Actually a survey of your prior experience

with concepts taught in this course.

Won’t affect your grade.)

https://canvas.cmu.edu/courses/28989/quizzes/83202

https://canvas.cmu.edu/courses/28989/quizzes/83202

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Primary Textbook

⬛ Randal E. Bryant and David R. O’Hallaron,

▪ Computer Systems: A Programmer’s Perspective, Third Edition
(CS:APP3e), Pearson, 2016

▪ https://csapp.cs.cmu.edu

▪ This book really matters for the course!

▪ How to solve labs

▪ Practice problems typical of exam problems

▪ Electronic editions available (Don’t get paperback/international
version!)

▪ On reserve in Sorrells Library

⬛ Note: All textbooks have errors
▪ Don’t panic if you see something that seems wrong

▪ Come talk to us about it if you can’t make it make sense

https://csapp.cs.cmu.edu/

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Primary Textbook

⬛ Randal E. Bryant and David R. O’Hallaron,

▪ Computer Systems: A Programmer’s Perspective, Third Edition
(CS:APP3e), Pearson, 2016

▪ https://csapp.cs.cmu.edu

▪ This book really matters for the course!

▪ How to solve labs

▪ Practice problems typical of exam problems

▪ Electronic editions available (Don’t get paperback/international
version!)

▪ On reserve in Sorrells Library

⬛ Note: All textbooks have errors
▪ Don’t panic if you see something that seems wrong

▪ Come talk to us about it if you can’t make it make sense

https://csapp.cs.cmu.edu/

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Recommended reading

⬛ Brian Kernighan and Dennis Ritchie,

▪ The C Programming Language, Second Edition, Prentice Hall, 1988

▪ Everyone calls this book “K&R”

▪ Guide to C by the designers of the language

▪ Well-written, concise

▪ A little dated

▪ Doesn’t cover additions to C since 1988 (that’s thirty years ago…)

▪ Casual about issues we consider serious problems now

▪ On reserve in Sorrells Library

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

If you want more books about C

⬛ C for Programmers with an introduction to C11
▪ Paul and Harvey Deitel
▪ Opposite of K&R: modern, verbose

▪ Lots of worked-out examples

▪ Ugly code style (compare readability to K&R)

⬛ 21st Century C
▪ Ben Klemens

▪ Supplement to full C textbooks: goes into the corners of the language

▪ Opinionated
▪ First half is about how to build C programs in the Unix environment

▪ So, if you want to understand the Makefiles we give you…

⬛ Learn C the Hard Way
▪ Zed A. Shaw
▪ Extremely opinionated

▪ Also has lots of worked-out examples

▪ Only book I can find that takes “undefined behavior” seriously enough

⬛ These books are not on reserve
▪ The library may still have them, or you can borrow a copy from Weinberg

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Components
⬛Lectures

▪ Higher level concepts

▪ Recitation material is part of lectures during summer

⬛Labs (8)
▪ The heart of the course

▪ 1-2+ weeks each

▪ Provide in-depth understanding of an aspect of systems

▪ Programming and measurement

⬛ Written Assignments (best 6 of 8)

▪ Reinforce concepts

▪ You grade your peers’ work according to our rubric

▪ Weekly, except for exam weeks (see schedule)

⬛Exams (midterm + final)

▪ Test your understanding of concepts & mathematical principles

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie MellonCarnegie Mellon

Getting Help

⬛Class Web page: http://www.cs.cmu.edu/~213

▪ Complete schedule of lectures, exams, and assignments

▪ Copies of lectures, assignments, exams, solutions

▪ FAQ

⬛Piazza

▪ Best place for questions about assignments

▪ By default, your posts will be private

▪ We will fill the FAQ and Piazza with answers to common questions

⬛Canvas

▪ Daily formative quizzes

▪ Can provide access to Piazza and occasional material

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie MellonCarnegie Mellon

Getting Help
⬛Office hours (starting next week):

▪ TAs: Check web page

▪ CMUQueue.xyz

▪ Faculty: Zack Weinberg (GHC 4124): TBD

Kyle Liang (TCS 312): TBD

⬛Ask Questions on Piazza

▪ For individual or lab-specific questions, make sure question is private

⬛1:1 Appointments

▪ You can schedule 1:1 appointments with any of the teaching staff

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie MellonCarnegie Mellon

213 Student HowTo
⬛Attend Lectures

⬛Attend boot camps

⬛Start labs early (really) and use GIT properly

⬛TA office hours: we need to manage load and waiting time

▪ lab-related concrete questions

▪ must write them down before getting help

▪ Time slots

⬛Faculty Office Hours

▪ Grading, special cases, issues, lab-related questions

▪ Conceptual and longer questions

▪ Open discussions

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Policies: Labs And Exams

⬛Work groups

▪ You must work alone on all lab assignments

⬛Handins
▪ Labs due at 11:59pm

▪ Electronic handins using Autolab (no exceptions!)

⬛Exams

▪ Longer version of normal class period

▪ Administered online via Gradescope

⬛Appealing grades
▪ Via detailed private post to Piazza within 7 days of completion of grading

▪ Follow formal procedure described in syllabus

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Facilities

⬛Labs will use the Intel Computer Systems Cluster

▪ The “shark machines”

▪ linux> ssh shark.ics.cs.cmu.edu

▪ 21 servers donated by Intel for 213/513

▪ 10 student machines (for student logins)

▪ 1 head node (for instructor logins)

▪ 10 grading machines (for autograding)

▪ Each server: Intel Core i7: 8 Nehalem cores, 32 GB DRAM, RHEL 6.1

▪ Rack-mounted in Gates machine room

▪ Login using your Andrew ID and password

⬛Getting help with the cluster machines:
▪ Please direct questions to piazza

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Timeliness
⬛Grace days

▪ 5 grace days for the semester

▪ Limit of 0, 1, or 2 grace days per lab used automatically

▪ Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks

⬛Lateness penalties

▪ Once grace day(s) used up, get penalized 15% per day

▪ No handins later than 3 days after due date

⬛Catastrophic events
▪ Major illness, death in family, …

▪ Formulate a plan (with your academic advisor) to get back on track

⬛Advice
▪ Once you start running late, it’s really hard to catch up

▪ Try to save your grace days until the last few labs

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Other Rules of the Lecture Hall

⬛Laptops: permitted

⬛Electronic communications: forbidden

▪ No email, instant messaging, cell phone calls, etc

⬛Presence in lectures (213): voluntary, recommended

⬛No recordings of ANY KIND

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Policies: Grading

⬛Labs (50%): weighted according to effort (see labs.html)

⬛Writtens (12%): 2 percentage points each
⬛ Lowest two scores are dropped

⬛Exams (38%): midterm (14%), final (24%)

⬛Final grades based on a straight scale (90/80/70/60) with a
small amount of curving

▪ Only upward

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Programs and Data

⬛Topics

▪ Bit operations, arithmetic, assembly language programs

▪ Representation of C control and data structures

▪ Includes aspects of architecture and compilers

⬛Assignments

▪ L1 (datalab): Manipulating bits

▪ L2 (bomblab): Defusing a binary bomb

▪ L3 (attacklab): The basics of code injection attacks

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

The Memory Hierarchy

⬛Topics

▪ Memory technology, memory hierarchy, caches, disks, locality

▪ Includes aspects of architecture and OS

⬛Assignments

▪ L4 (cachelab): Building a cache simulator and optimizing for locality.

▪ Learn how to exploit locality in your programs.

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Exceptional Control Flow

⬛Topics

▪ Hardware exceptions, processes, process control, Unix signals,
nonlocal jumps

▪ Includes aspects of compilers, OS, and architecture

⬛Assignments

▪ L5 (tshlab): Writing your own Unix shell.

▪ A first introduction to concurrency

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Virtual Memory

⬛Topics

▪ Virtual memory, address translation, dynamic storage allocation

▪ Includes aspects of architecture and OS

⬛Assignments
▪ L6 (malloclab): Writing your own malloc package

▪ Get a real feel for systems-level programming

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Networking, and Concurrency

⬛Topics

▪ High level and low-level I/O, network programming

▪ Internet services, Web servers

▪ concurrency, concurrent server design, threads

▪ I/O multiplexing with select

▪ Includes aspects of networking, OS, and architecture

⬛Assignments
▪ L7 (proxylab): Writing your own Web proxy

▪ Learn network programming and more about concurrency and
synchronization.

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Lab Rationale

⬛Each lab has a well-defined goal such as solving a puzzle or
winning a contest

⬛Doing the lab should result in new skills and concepts

⬛We try to use competition in a fun and healthy way

▪ Set a reasonable threshold for full credit

▪ Post intermediate results (anonymized) on Autolab scoreboard for glory!

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Doing Labs
⬛Go to the Autolab instance for your version of the course

⬛15213: https://autolab.andrew.cmu.edu/courses/15213-m22
⬛15513: https://autolab.andrew.cmu.edu/courses/15513-m22
⬛You won’t be able to access the “wrong” instance

⬛Click on the link to the lab in the “assignments” list

⬛Select “view writeup” from the “options” list

⬛Read the entire writeup before you start working!

⬛Writeup contains instructions for downloading starter code to

the shark machines

⬛If you have questions

▪ Piazza

▪ Office hours

https://autolab.andrew.cmu.edu/courses/15213-m22
https://autolab.andrew.cmu.edu/courses/15513-m22

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Autolab (https://autolab.andrew.cmu.edu)

⬛Labs are provided by the CMU Autolab system

▪ Project page: http://autolab.andrew.cmu.edu

▪ Developed by CMU faculty and students

▪ Key ideas: Autograding and Scoreboards

▪ Autograding: Providing you with instant feedback.

▪ Scoreboards: Real-time, rank-ordered, and anonymous summary.

▪ Used by over 3,000 students each semester

⬛With Autolab you can use your Web browser to:

▪ Download the lab materials

▪ Handin your code for autograding by the Autolab server

▪ View the class scoreboard

▪ View the complete history of your code handins, autograded results,
instructor’s evaluations, and gradebook.

▪ View the TA annotations of your code for Style points.

http://autolab.cs.cmu.edu/

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Autolab accounts

⬛Students enrolled 11:45am on Monday, May 16 have Autolab
accounts

⬛You must be enrolled to get an account

▪ Autolab is not tied in to the Hub’s rosters

▪ We will update the autolab accounts once a day, so check back in 24 hours.

⬛For those who are waiting to add in, the first lab (datalab) will be
available on the Schedule page of the course Web site.

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Linux/Git bootcamp

⬛How to tar and untar files

⬛How to set permissions on local and afs directories

⬛How to recover old files from git

⬛How to ssh to the lab machines

⬛How to use a make file

⬛And all the other things you were always afraid to ask …

⬛Watch the schedule page for date and time.

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Waitlist questions

⬛All questions about enrollment should go to
Amy Weis alweis@andrew.cmu.edu
and/or staff for your program.

⬛Please don’t contact the instructors with waitlist questions.

mailto:alweis@andrew.cmu.edu

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Welcome
and Enjoy!

