Bits, Bytes and Integers – Part 1

15-213/15-513: Introduction to Computer Systems 2nd Lecture, May 18, 2022

Instructors:

Zack Weinberg

Waitlist questions

All waitlist questions should go to Amy Weis <u>alweis@andrew.cmu.edu</u>

Please don't contact the instructors with waitlist questions.

Reminder about in-person attendance

This room is full.

- In-person classes are primarily for undergraduate students who are enrolled in 15-213.
- If I told you in email to enroll in 513 for a reason other than "you're a graduate student," you are also entitled to be in this room.
- If you're enrolled in 15-513 because you are a graduate student, however, you may attend only if there is space.

Roadmap – Inside a Computer

You may have seen this block diagram, or one like it, before.

Today: Bits, Bytes, and Integers

Representing information as bits

- **Bit-level manipulations**
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- **Representations in memory, pointers, strings**

Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires

For example, can count in binary

Base 2 Number Representation

- Represent 15213₁₀ as 11101101101101₂
- Represent 1.20₁₀ as 1.001100110011[0011]...₂
- Represent 1.5213 X 10⁴ as 1.1101101101101₂ X 2¹³

Encoding Byte Values

Byte = 8 bits

- Binary 000000002 to 111111122
- Decimal: 0₁₀ to 255₁₀
- Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

4	et Der	sima Binary
0	0 \	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	13	1101
Ε	14	1110
F	15	1111

Activity: binary, hexadecimal, twos complement

https://www.cs.cmu.edu/afs/cs/academic/class/15213m22/www/activities/213_lecture2.pdf

Preview: Combining bytes...

C Data Type	Typical 32-bit	Typical 64-bit
char	1	1
short	2	2
int	4	4
long	4	8
float	8	8
double	8	8
pointer	4	8

Preview: ... to make integers

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

UMax = $2^w - 1$ where *w* is the number of bits ("word size") UMin = 0

- **TMax = 2^{w-1} 1**
 - TMin = -2^{w-1}
 - Asymmetric!
 - Because of zero