Floating Point

15-213: Introduction to Computer Systems 4th Lecture, May 20, 2022

Instructor:

Kyle Liang

Today: Floating Point

- Background: Fractional binary numbers
- ■IEEE floating point standard: Definition
- Rounding, addition, multiplication
- Example and properties
- ■Floating point in C
- Summary

Activity Time

Activity:

https://www.cs.cmu.edu/afs/cs/academic/class/15213-m22/www/activities/213_lecture4.pdf

Do "Model 1" and "Model 2", then stop.

Fractional Binary Numbers

- **■**We want to represent fractions
 - Can we assign integers to fractions? (i.e. 0 -> 0.0, 1 -> 0.1, 2 -> 0.2, ...)
 - **■** Multiplication doesn't work

Fractional Binary Numbers

■What is 1011.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

■Value	Representation		
5 3/4	101.112	= 4 + 1 + 1/2 + 1/4	
2 7/8	10.1112	= 2 + 1/2 + 1/4 + 1/8	
1 7/16	1.0111	= 1 + 1/4 + 1/8 + 1/16	

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.1111111..., are just below 1.0

•
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

• Use notation $1.0 - \varepsilon$

Representable Numbers

■Limitation #1

- Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations

```
    Value Representation
    1/3 0.01010101[01]...<sub>2</sub>
    1/5 0.001100110011[0011]...<sub>2</sub>
```

1/10 0 0001100110011

• 1/10 0.0001100110011[0011]...₂

Limitation #2

- Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Activity Time

Activity:

https://www.cs.cmu.edu/afs/cs/academic/class/15213-m22/www/activities/213_lecture4.pdf

Do "Model 3" and "Model 4", then stop.

Today: Floating Point

- Background: Fractional binary numbers
- ■IEEE floating point standard: Definition
- Rounding, addition, multiplication
- Example and properties
- Floating point in C
- Summary

IEEE Floating Point

■IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs
- Some CPUs don't implement IEEE 754 in full e.g., early GPUs, Cell BE processor

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

■Numerical Form:

Example:

 $15213_{10} = (-1)^0 \times 1.1101101101101_2 \times 2^{13}$

(**−1**)^s M **2**^E

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

Encoding

- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

S	ехр	frac
---	-----	------

Precision options

■Single precision: 32 bits

≈ 7 decimal digits, 10^{±38}

S	ехр	frac
1	8-bits	23-bits

Double precision: 64 bits

≈ 16 decimal digits, $10^{\pm 308}$

Other formats: half precision, quad precision

Three "kinds" of floating point numbers

"Normalized" Values

$$v = (-1)^s M 2^E$$

When: exp ≠ 000...0 and exp ≠ 111...1

- **Exponent coded as a** biased **value:** E = Exp **–** Bias
 - Exp: unsigned value of exp field
 - $Bias = 2^{k-1} 1$, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- ■Significand coded with implied leading 1: M = 1.xxx...x₂
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

$$v = (-1)^s M 2^E$$

 $E = Exp - Bias$

- ■Value: float F = 15213.0;
 - $15213_{10} = 11101101101101_2$ = $1.1101101101101_2 \times 2^{13}$

Significand

$$M = 1.101101101_{2}$$

frac= $101101101101_{000000000_{2}}$

Exponent

$$E = 13$$
 $Bias = 127$
 $Exp = 140 = 10001100_{2}$

Result:

0 10001100 1101101101101000000000

s exp frac

Denormalized Values

$$v = (-1)^s M 2^E$$

E = 1 - Bias

- **Condition:** exp = 000...0
- **Exponent value:** E = 1 Bias (instead of E = 0 Bias)
 - Why not 0 Bias?
 - Smallest normalized value has Exp = 1
- Significand coded with implied leading 0: M = 0.xxx...x₂
 - *xxx.x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, frac ≠ 000...0
 - Numbers closest to 0.0
 - Equispaced

Special Values

■Condition: exp = 111...1

- ■Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- \blacksquare Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

C float Decoding Example

float: 0xC0A00000

$$v = (-1)^s M 2^E$$

E = Exp - Bias

$$Bias = 2^{k-1} - 1 = 127$$

binary: <u>1100</u> <u>0000</u> <u>1010</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u>

1 1000 0001 010 0000 0000 0000 0000 0000

1 8-bits

23-bits

$$E = 129 -> Exp = 129 - 127 = 2$$
 (decimal)

S = **1** -> negative number

M = 1.010 0000 0000 0000 0000 0000= 1 + 1/4 = 1.25

$$v = (-1)^s M 2^E = (-1)^1 * 1.25 * 2^2 = -5$$

Hex Decimanary

0	0	0000
1	1	0001
2 3	2	0010
	3	0011
4 5	4	0100
5	5	0101
6 7 8	6 7 8	0110
7	7	0111
		1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Visualization: Floating Point Encodings

Activity Time

Activity:

https://www.cs.cmu.edu/afs/cs/academic/class/15213-m22/www/activities/213_lecture4.pdf

Do "Model 5" and "Model 6", then stop.

Today: Floating Point

- Background: Fractional binary numbers
- ■IEEE floating point standard: Definition
- Rounding, addition, multiplication
- Example and properties
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

$$\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$$

$$\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$$

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

- Towards zero
 - Round down (-∞)
 - Round up (+∞)
 - Nearest Even (default)

\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
↓ \$1	↓ \$1	↓\$1	↓\$2	1 -\$1
↓\$1	↓\$1	↓\$1	↓\$2	↓ –\$2
† \$2	† \$2	†\$2	†\$3	1 -\$1
↓\$1	† \$2	† \$2	\$ 2	↓ –\$2

Closer Look at Round-To-Even

■ Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- C99 has support for rounding mode management
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half way—round down)

Rounding Binary Numbers

■Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value Binary	Rounded	Action	Rounded Value	
2 3/32	10.00 <mark>011</mark> ₂	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> ₂	10.01 ₂	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> ₂	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> ₂	10.1 <mark>0</mark> 2	(1/2—down)	2 1/2

FP Multiplication

- $\blacksquare (-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}$
- **Exact Result: (-1)**^s M **2**^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent *E*: *E1* + *E2*

Fixing

- If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

```
4 bit mantissa: 1.010*2^2 \times 1.110*2^3 = 10.0011*2^5
= 1.00011*2^6 = 1.001*2^6
```

Floating Point Addition

- \blacksquare (-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}
 - Assume *E1* > *E2*
- Exact Result: (-1)^s M 2^E
 - Sign *s*, significand *M*:
 - Result of signed align & add
 - Exponent E: E1

Fixing

- If $M \ge 2$, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Get binary points lined up

$$1.010*2^{2} + 1.110*2^{3} = (1.010 + 11.100)*2^{2}$$

= $100.110 * 2^{2} = 1.0011 * 2^{4} = 1.010 * 2^{4}$

Mathematical Properties of FP Add

Compare to those of Abelian Group

Closed under addition?

Yes

But may generate infinity or NaN

Commutative?

Yes

Associative?

No

Overflow and inexactness of rounding

 \cdot (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

0 is additive identity?

Yes

• Every element has additive inverse?

Almost

Yes, except for infinities & NaNs

■ Monotonicity

• $a \ge b \Rightarrow a+c \ge b+c$?

Almost

Except for infinities & NaNs

Mathematical Properties of FP Mult

■ Compare to Commutative Ring

Closed under multiplication?

Yes

But may generate infinity or NaN

• Multiplication Commutative?

Yes

• Multiplication is Associative?

No

Possibility of overflow, inexactness of rounding

Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20

1 is multiplicative identity?

Yes

• Multiplication distributes over addition?

No

Possibility of overflow, inexactness of rounding

• 1e20*(1e20-1e20)=0.0, 1e20*1e20 - 1e20*1e20 = NaN

Monotonicity

• $a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c$?

Almost

Except for infinities & NaNs

Today: Floating Point

- ■Background: Fractional binary numbers
- ■IEEE floating point standard: Definition
- Rounding, addition, multiplication
- Example and properties
- ■Floating point in C
- Summary

Tiny Floating Point Example

■8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic Range (Positive Only)

Dynamic Range (Positive Only)						$v = (-1)^{s} M 2^{E}$ n: E = Exp - Bias	
	s	exp	frac	E	Value		d: $E = 1 - Bias$
	0	0000	000	-6	0		
	0	0000	001	-6	1/8*1/64 =	= 1/512	closest to zero
Denormalized	0	0000	010	-6	2/8*1/64 =	= 2/512	$(-1)^{0}(0+1/4)*2^{-6}$
numbers	•••						
	0	0000	110	-6	6/8*1/64 =	= 6/512	
	0	0000	111	-6	7/8*1/64 =	= 7/512	largest denorm
	0	0001	000	-6	8/8*1/64 =	= 8/512	smallest norm
	0	0001	001	-6	9/8*1/64 =	= 9/512	$(-1)^{0}(1+1/8)*2^{-6}$
	_	0110		-1	14/8*1/2 =	•	
	0	0110	111	-1	15/8*1/2 =	= 15/16	closest to 1 below
Normalized	0	0111	000	0	8/8*1 =	= 1	
numbers	0	0111	001	0	9/8*1 =	= 9/8	closest to 1 above
	0	0111	010	0	10/8*1 =	= 10/8	
	•••						
	0	1110	110	7	14/8*128 =	= 224	
	0	1110	111	7	15/8*128 =	= 240	largest norm
	0	1111	000	n/a	inf		

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is $2^{3-1}-1=3$

■Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

■6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Special Properties of the IEEE Encoding

FP Zero Same as Integer Zero

All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield? The answer is complicated.
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- ■IEEE floating point standard: Definition
- Rounding, addition, multiplication
- Example and properties
- ■Floating point in C
- Summary

Floating Point in C

■C Guarantees Two Levels

- float single precision
- double double precision

Conversions/Casting

- Casting between int, float, and double changes bit representation
- double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int → float
 - Will round according to rounding mode

Activity Time

Activity:

https://www.cs.cmu.edu/afs/cs/academic/class/15213m22/www/activities/213_lecture4.pdf

■ Do "Model 7", then stop.

Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither **d** nor **f** is NaN

Single precision: 32 bits

Double precision: 64 bits

Summary

- **IEEE Floating Point has clear mathematical properties**
- ■Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications

programmers

Additional Slides

Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction

s exp frac

1 4-bits 3-bits

Postnormalize to deal with effects of rounding

■ Case Study

Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

- 128 10000000
 - 15 00001101
 - 33 00010001
 - 35 00010011
- 138 10001010
 - 63 00111111

Normalize

S	ехр	exp frac	
1	4-bits	3-bits	

Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	1000000	1.000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

Round up conditions

• Round = 1, Sticky = $1 \rightarrow > 0.5$

• Guard = 1, Round = 1, Sticky = 0 → Round to even

ValueFraction GRS	Incr?	Roun	ded
1281.0000000	000	N	1.000
15 1.1010000	100	N	1.101
17 1.000 <mark>1000</mark>	010	N	1.000
19 1.0011000	110	Y	1.010
1381.0001010	011	Y	1.001
63 1.111 <mark>1100</mark>	111	Y	10.000

Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Interesting Numbers

{single,double}

Description exp frac Numeric Value

- **■** Zero 00...00 00...00 0.0
- Smallest Pos. Denorm. 00...00 00...01 $2^{-\{23,52\}}$ x $2^{-\{126,1022\}}$
 - Single $\approx 1.4 \times 10^{-45}$
 - Double $\approx 4.9 \times 10^{-324}$
- Largest Denormalized 00...00 11...11 $(1.0 \varepsilon) \times 2^{-\{126,1022\}}$
 - Single $\approx 1.18 \times 10^{-38}$
 - Double $\approx 2.2 \times 10^{-308}$
- Smallest Pos. Normalized 00...01 00...00 1.0 x 2^{-{126,1022}}
 - Just larger than largest denormalized
- One 01...11 00...00 1.0
- Largest Normalized 11...10 11...11 (2.0 ϵ) x 2^{127,1023}
 - Single $\approx 3.4 \times 10^{38}$
 - Double $\approx 1.8 \times 10^{308}$