
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Optimization

15-213/15-513/14-513: Introduction to Computer Systems
11th Lecture, June 14, 2022

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Eberly Center early course feedback

 Principles and goals of compiler optimization

 Examples of optimizations

 Obstacles to optimization

 Tangent: branch prediction

 Troubleshooting the optimizer

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Early Course Feedback

 Researchers from the Eberly Center are here
to interview you about what’s working well
and not so well in this course.

 First half hour

 Faculty and TAs will leave the room

 We only get a summary afterward

 No obligation to participate

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Back in the Good Old Days,
when the term "software" sounded funny
and Real Computers were made out of drums

and vacuum tubes,
Real Programmers wrote in machine code.

Not FORTRAN. Not RATFOR. Not, even,
assembly language.

Machine Code.

Raw, unadorned, inscrutable hexadecimal numbers. Directly.

— “The Story of Mel, a Real Programmer”

Ed Nather, 1983

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Rear Admiral Grace Hopper

▪ First person to find an
actual bug (a moth)

▪ Invented first compiler in
1951 (precursor to COBOL)

▪ “I decided data processors
ought to be able to write
their programs in English,
and the computers would
translate them into
machine code”

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

John Backus

▪ Developed FORTRAN in
1957 for the IBM 704

▪ Oldest machine-
independent programming
language still in use today

▪ “Much of my work has
come from being lazy. I
didn't like writing
programs, and so, when I
was working on the IBM
701, I started work on a
programming system to
make it easier to write
programs”

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fran Allen

▪ Pioneer of many optimizing
compilation techniques

▪ Wrote a paper in 1966 that
introduced the concept of
the control flow graph,
which is still central to
compiler theory today

▪ First woman to win the
ACM Turing Award

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Goals of compiler optimization

 Minimize number of instructions
▪ Don’t do calculations more than once

▪ Don’t do unnecessary calculations at all

▪ Avoid slow instructions (multiplication, division)

 Avoid waiting for memory
▪ Keep everything in registers whenever possible

▪ Access memory in cache-friendly patterns

▪ Load data from memory early, and only once

 Avoid branching
▪ Don’t make unnecessary decisions at all

▪ Make it easier for the CPU to predict branch destinations

▪ “Unroll” loops to spread cost of branches over more instructions

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limits to compiler optimization

 Generally cannot improve algorithmic complexity
▪ Only constant factors, but those can be worth 10x or more…

 Must not cause any change in program behavior
▪ Programmer may not care about “edge case” behavior,

but compiler does not know that

▪ Exception: language may declare some changes acceptable

 Often only analyze one function at a time
▪ Whole-program analysis (“LTO”) expensive but gaining popularity

▪ Exception: inlining merges many functions into one

 Tricky to anticipate run-time inputs
▪ Profile-guided optimization can help with common case, but…

▪ “Worst case” performance can be just as important as “normal”

▪ Especially for code exposed to malicious input
(e.g. network servers)

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two kinds of optimizations

 Local optimizations
work inside a single
basic block
▪ Constant folding,

strength reduction, dead
code elimination, (local)
CSE, …

 Global optimizations
process the entire
control flow graph of a
function
▪ Loop transformations,

code motion, (global)
CSE, …

setup

Easy?

entry

easy complex

loop

Done?

exit

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Eberly Center early course feedback

 Principles and goals of compiler optimization

 Examples of optimizations

 Obstacles to optimization

 Tangent: branch prediction

 Troubleshooting the optimizer

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant folding

 Do arithmetic in the compiler

long mask = 0xFF << 8; →
long mask = 0xFF00;

 Any expression with constant inputs can be folded

 Might even be able to remove library calls…

size_t namelen = strlen("Harry Bovik"); →
size_t namelen = 11;

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dead code elimination

 Don’t emit code that will never be executed

if (0) { puts("Kilroy was here"); }
if (1) { puts("Only bozos on this bus"); }

 Don’t emit code whose result is overwritten

x = 23;
x = 42;

 These may look silly, but...
▪ Can be produced by other optimizations

▪ Assignments to x might be far apart

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common subexpression elimination

 Factor out repeated calculations, only do them once

norm[i] = v[i].x*v[i].x + v[i].y*v[i].y;

→

elt = &v[i];

x = elt->x;

y = elt->y;

norm[i] = x*x + y*y;

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code motion

 Move calculations out of a loop

 Only valid if every iteration would produce same result

long j;
for (j = 0; j < n; j++)

a[n*i+j] = b[j];

→
long j;

int ni = n*i;
for (j = 0; j < n; j++)

a[ni+j] = b[j];

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inlining

 Copy body of a function into its caller(s)
▪ Can create opportunities for many other optimizations

▪ Can make code much bigger and therefore slower (size; i-cache)

int pred(int x) {
if (x == 0)

return 0;
else

return x - 1;
}

int func(int y) {
return pred(y)

+ pred(0)
+ pred(y+1);

}

int func(int y) {

int tmp;

if (y == 0) tmp = 0; else tmp = y - 1;

if (0 == 0) tmp += 0; else tmp += 0 - 1;

if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

return tmp;

}

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inlining

 Copy body of a function into its caller(s)
▪ Can create opportunities for many other optimizations

▪ Can make code much bigger and therefore slower

int pred(int x) {
if (x == 0)

return 0;
else

return x - 1;
}

int func(int y) {
return pred(y)

+ pred(0)
+ pred(y+1);

}

int func(int y) {

int tmp;

if (y == 0) tmp = 0; else tmp = y - 1;

if (0 == 0) tmp += 0; else tmp += 0 - 1;

if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

return tmp;

}

Always true Does nothing Can constant fold

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inlining

 Copy body of a function into its caller(s)
▪ Can create opportunities for many other optimizations

▪ Can make code much bigger and therefore slower

int func(int y) {

int tmp;

if (y == 0) tmp = 0; else tmp = y - 1;

if (0 == 0) tmp += 0; else tmp += 0 - 1;

if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

return tmp;

}

int func(int y) {

int tmp = 0;

if (y != 0) tmp = y - 1;

if (y != -1) tmp += y;

return tmp;

}

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Eberly Center early course feedback

 Principles and goals of compiler optimization

 Examples of optimizations

 Obstacles to optimization

 Tangent: branch prediction

 Troubleshooting the optimizer

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {

long i, j;
for (i = 0; i < n; i++) {

b[i] = 0;
for (j = 0; j < n; j++)

b[i] += a[i*n + j];
}

}

Memory Aliasing

▪ Code updates b[i] on every iteration

▪ Why couldn’t compiler optimize this away?

movq $0, (%rsi)
pxor %xmm0, %xmm0

.L4:
addsd (%rdi), %xmm0
movsd %xmm0, (%rsi)
addq $8, %rdi
cmpq %rcx, %rdi
jne .L4

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

▪ Use a local variable for intermediate results

pxor %xmm0, %xmm0
.L4:

addsd (%rdi), %xmm0
addq $8, %rdi
cmpq %rax, %rdi
jne .L4
movsd %xmm0, (%rsi)

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows2(double *a, double *b, long n) {

long i, j;
for (i = 0; i < n; i++) {

double val = 0;
for (j = 0; j < n; j++)

val += a[i*n + j];
b[i] = val;

}
}

Avoiding Aliasing Penalties

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Can’t move function calls out of loops

void lower_quadratic(char *s) {

size_t i;

for (i = 0; i < strlen(s); i++)

if (s[i] >= 'A' && s[i] <= 'Z')

s[i] += 'a' - 'A';

}

void lower_still_quadratic(char *s) {

size_t i, n = strlen(s);

for (i = 0; i < n; i++)

if (s[i] >= 'A' && s[i] <= 'Z') {

s[i] += 'a' - 'A';

n = strlen(s);

}

}

void lower_linear(char *s) {

size_t i, n = strlen(s);

for (i = 0; i < n; i++)

if (s[i] >= 'A' && s[i] <= 'Z')

s[i] += 'a' - 'A';

} Lots more examples of this kind of bug:
accidentallyquadratic.tumblr.com

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Can’t move function calls out of loops

void lower_quadratic(char *s) {

size_t i;

for (i = 0; i < strlen(s); i++)

if (s[i] >= 'A' && s[i] <= 'Z')

s[i] += 'a' - 'A';

}

void lower_still_quadratic(char *s) {

size_t i, n = strlen(s);

for (i = 0; i < n; i++)

if (s[i] >= 'A' && s[i] <= 'Z') {

s[i] += 'a' - 'A’;

n = strlen(s);

}

}

void lower_linear(char *s) {

size_t i, n = strlen(s);

for (i = 0; i < n; i++)

if (s[i] >= 'A' && s[i] <= 'Z')

s[i] += 'a' - 'A';

}

after

each

change

every

iteration

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Eberly Center early course feedback

 Principles and goals of compiler optimization

 Examples of optimizations

 Obstacles to optimization

 Tangent: branch prediction

 Troubleshooting the optimizer

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Modern CPU Design

Execution

Functional
Units

Instruction Control

Branch Arith Arith Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

Arith

Operation Results

Retirement
Unit

Register
File

Register Updates

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Instruction Control Unit must work well ahead of Execution Unit
to generate enough operations to keep EU busy

If the CPU has to wait for the result of the cmp before continuing
to fetch instructions, may waste tens of cycles doing nothing!

404663: mov $0x0,%eax

404668: cmp (%rdi),%rsi

40466b: jge 404685

40466d: mov 0x8(%rdi),%rax

. . .

404685: repz retq

Branches Are A Challenge

Executing

Need to know
which way to
branch …

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Guess which way branch will go
▪ Begin executing instructions at predicted position

▪ But don’t actually modify register or memory data

404663: mov $0x0,%eax

404668: cmp (%rdi),%rsi

40466b: jge 404685

40466d: mov 0x8(%rdi),%rax

. . .

404685: repz retq

Branch Prediction

Predict Taken

Continue
Fetching
Here

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

401029: mulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

Branch Prediction Through Loop
401029: mulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume
array length = 100

Read
invalid
location

Executed

Fetched

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

401029: mulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume
array length = 100

Branch Misprediction Invalidation

Invalidate

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Misprediction Recovery

 Performance Cost
▪ Multiple clock cycles on modern processor

▪ Can be a major performance limiter

401029: mulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

401036: jmp 401040

. . .

401040: movsd %xmm0,(%r12)

i = 99 Definitely not taken

Reload
Pipeline

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Prediction Numbers

 A simple heuristic:
▪ Backwards branches are often loops, so predict taken

▪ Forwards branches are often ifs, so predict not taken

▪ >95% prediction accuracy just with this!

 Fancier algorithms track behavior of each branch
▪ Subject of ongoing research

▪ 2011 record (https://www.jilp.org/jwac-2/program/JWAC-2-
program.htm): 34.1 mispredictions per 1000 instructions

▪ Current research focuses on the remaining handful of
“impossible to predict” branches (strongly data-dependent,
no correlation with history)

▪ e.g. https://hps.ece.utexas.edu/pub/PruettPatt_BranchRunahead.pdf

https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://hps.ece.utexas.edu/pub/PruettPatt_BranchRunahead.pdf

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Optimizing for Branch Prediction

 Reduce # of branches

▪ Transform loops

▪ Unroll loops

▪ Use conditional moves
▪ Not always a good idea

 Make branches
predictable

▪ Sort data
https://stackoverflow.com/questions/11227809

▪ Avoid indirect branches
▪ function pointers

▪ virtual methods

.Loop:
movzbl 0(%rbp,%rbx), %edx
leal -65(%rdx), %ecx
cmpb $25, %cl
ja .Lskip
addl $32, %edx
movb %dl, 0(%rbp,%rbx)

.Lskip:
addl $1, %rbx
cmpq %rax, %rbx
jb .Loop

.Loop:
movzbl 0(%rbp,%rbx), %edx
movl %edx, %esi
leal -65(%rdx), %ecx
addl $32, %edx
cmpb $25, %cl
cmova %esi, %edx
movb %dl, 0(%rbp,%rbx)
addl $1, %rbx
cmpq %rax, %rbx
jb .Loop

Memory write
now

unconditional!

https://stackoverflow.com/questions/11227809

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Eberly Center early course feedback

 Principles and goals of compiler optimization

 Examples of optimizations

 Obstacles to optimization

 Tangent: branch prediction

 Troubleshooting the optimizer

