
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory: Details

15-213/15-513: Introduction to Computer Systems
18th Lecture, July 13, 2022

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Virtual Addressing

 Each process has its own virtual address space

 Page tables map virtual to physical addresses

 Physical memory can be shared among processes

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1

VP k

...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Multi-level page tables

 Translation lookaside buffers

 Activity 1

 Concrete examples of virtual memory systems
▪ “Simple memory system” from CSAPP 9.6.4

▪ Intel Core i7

 Activity 2

 Nifty things virtual memory makes possible
▪ Paging/swapping (disk as extra RAM)

▪ Memory-mapped files (RAM as cache for disk)

▪ Copy-on-write sharing

 Activity 3

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The problem (with one-level page tables)

248 byte
address
space

One 64-bit array element

for each 4096-byte page

= ൗ248
4096 ⋅ 8 bytes

= 239 bytes

= 512 gigabytes

for one page table

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Two-Level Page Table Hierarchy

Level 1

page table

Level 2

page tables

VP 1024

...

VP 2047

VP 2048

...

VP 3072

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023
null PTEs

PTE 1023

VP 1048576

Virtual

memory

1020 more
null PTEs

PTE 1

PTE 2

PTE 0 (null)

PTE 1023

2048 allocated pages
for code and data

1021 · 1024 + 1023
unallocated pages

1 allocated page
for the stack

VP 0…1023
(unmapped)

VP 3073…
1048575

(unmapped)

1024 unallocated pages

32-bit address space, 4-byte PTEs, 4096-byte pages

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Translating with a k-level Page Table

Page table
base register

(PTBR)

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PP

N

0p-1m-1

PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

the Level 1

page table

a Level 2

page table

a Level k

page table

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The problem (with k-level page tables)

Page table
base register

(PTBR)

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PP

N

PPOPPN

VIRTUAL ADDRESS

... ...

the Level 1

page table

a Level 2

page table

a Level k

page table

Cache
miss!

Cache
miss!

Cache
miss!

Cache
miss!

Cache
miss!

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Speeding up Translation with a TLB

⬛ Page table entries (PTEs) are cached
like any other memory word

▪ PTEs may be evicted by other data references

▪ PTE hit still costs cache delay

⬛ Solution: Translation Lookaside Buffer (TLB)
▪ Dedicated cache for page table entries

▪ TLB hit = page table not consulted

▪ Can be fairly small: one TLB entry covers 4k or more

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Accessing the TLB

⬛ MMU uses the VPN portion of the virtual address to
access the TLB:

TLB tag (TLBT) TLB index (TLBI)

0p-1pn-1

VPO

VPN

p+t-1p+t

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1

T = 2t sets

TLBI selects the set

TLBT matches tag
of line within set

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLB Hit

MMU
Cache/
Memory

CPU

CPU Chip

VA

1

PA

4

Data

5

A TLB hit eliminates memory accesses to the page table

TLB

2

VPN

PTE

3

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLB Miss

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs additional memory accesses (PTE lookup)
Fortunately, TLB misses are rare. Why?

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Multi-level page tables

 Translation lookaside buffers

 Activity 1

 Concrete examples of virtual memory systems
▪ “Simple memory system” from CSAPP 9.6.4

▪ Intel Core i7

 Activity 2

 Nifty things virtual memory makes possible
▪ Paging/swapping (disk as extra RAM)

▪ Memory-mapped files (RAM as cache for disk)

▪ Copy-on-write sharing

 Activity 3

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory System Example

 Addressing
▪ 14-bit virtual addresses

▪ 12-bit physical address

▪ Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Simple Memory System TLB

 16 entries

 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0 0 0 0 1 1 0 1

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Translation Lookaside Buffer (TLB)

VPN = 0b1101 = 0x0D

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory System Page Table

 Only showing the first 16 entries (out of 256)

10D0F

1110E

12D0D

0–0C

0–0B

1090A

11709

11308

ValidPPNVPN

0–07

0–06

11605

0–04

10203

13302

0–01

12800

ValidPPNVPN

0x0D → 0x2D

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory System Cache

 16 lines, 4-byte cache line size

 Physically addressed

 Direct mapped
V[0b00001101101001] = V[0x369]
P[0b101101101001] = P[0xB69] = 0x15

1
11

0
10

1
9

1
8

0
7

1
6 5 4 3 2 1 0

PPOPPN

COCICT

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

1 0 1 0 0 1

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLB

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

Address Translation Example

Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address
11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN
0001010 11010

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel Core i7 Memory System

L1 d-cache

32 KB, 8-way

L2 unified cache

256 KB, 8-way

L3 unified cache

8 MB, 16-way

(shared by all cores)

Main memory

Registers

L1 d-TLB

64 entries, 4-way

L1 i-TLB

128 entries, 4-way

L2 unified TLB

512 entries, 4-way

L1 i-cache

32 KB, 8-way

MMU

(addr translation)

Instruction

fetch

Core x4

DDR3 Memory controller

3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect

4 links @ 25.6 GB/s each

To other

cores

To I/O

bridge

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

End-to-end Core i7 Address Translation

CPU

VPN VPO

36 12

TLBT TLBI

432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2

99

PTE

CR3

PPN PPO

40 12

Page tables

TLB

miss

TLB

hit

Physical

address

(PA)

Result

32/64

...

CT CO

40 6

CI

6

L2, L3, and

main memory

L1 d-cache

(64 sets, 8 lines/set)

L1

hit

L1

miss

Virtual address (VA)

VPN3 VPN4

99

PTE PTE PTE

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Level 1-3 Page Table Entries

Page table physical base address Unused G PS A CD WT U/S R/W P=1

Each entry references a 4K child page table. Significant fields:

P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

Page table physical base address: 40 most significant bits of physical page table
address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this
PTE.

51 12 11 9 8 7 6 5 4 3 2 1 0

UnusedXD

Available for OS (page table location on disk) P=0

526263

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Level 4 Page Table Entries

Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page. Significant fields:

P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)

D: Dirty bit (set by MMU on writes, cleared by software)

G: Global page (don’t evict from TLB on task switch)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

51 12 11 9 8 7 6 5 4 3 2 1 0

UnusedXD

Available for OS (page location on disk) P=0

526263

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Page Table Translation

CR3

Physical

address

of page

Physical

address

of L1 PT

9

VPO

9 12 Virtual

address

L4 PT

Page

table

L4 PTE

PPN PPO

40 12
Physical

address

Offset into

physical and

virtual page

VPN 3 VPN 4VPN 2VPN 1

L3 PT

Page middle

directory

L3 PTE

L2 PT

Page upper

directory

L2 PTE

L1 PT

Page global

directory

L1 PTE

99

40
/

40
/

40
/

40
/

40
/

12/

512 GB

region

per entry

1 GB

region

per entry

2 MB

region

per entry

4 KB

region

per entry

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cute Trick for Speeding Up L1 Access

 Observation
▪ Bits that determine CI identical in virtual and physical address

▪ Can index into cache while address translation taking place

▪ Generally we hit in TLB, so PPN bits (CT bits) available quickly

▪ “Virtually indexed, physically tagged”

▪ Cache carefully sized to make this possible

Physical

address

(PA)

CT CO

40 6

CI

6

Virtual

address

(VA)
VPN VPO

36 12

PPOPPN

Address

Translation

No

Change

CI

L1
Cache

CT Tag Check

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Multi-level page tables

 Translation lookaside buffers

 Activity 1

 Concrete examples of virtual memory systems
▪ “Simple memory system” from CSAPP 9.6.4

▪ Intel Core i7

 Activity 2

 Nifty things virtual memory makes possible
▪ Paging/swapping (disk as extra RAM)

▪ Memory-mapped files (RAM as cache for disk)

▪ Copy-on-write sharing

 Activity 3

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Paging (aka Swapping)

 Use (part of) disk as additional working memory

 Adds another layer to the memory hierarchy, but…
▪ “Main memory” is 10–1000x slower than the caches

▪ Disk is 10,000x slower than main memory

▪ Enormous miss penalty drives design

 Consequences
▪ Large page (block) size: 4KB and bigger

▪ Always write-back and fully associative

▪ Managed entirely in software

▪ Plenty of time to execute complex replacement algorithms

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality to the Rescue Again!

 Paging is terribly inefficient

 Only works because of locality

 At any point in time, programs tend to access a set of
active virtual pages called the working set
▪ Programs with good temporal locality will have small working sets

 If working set size < main memory size
▪ Good performance after compulsory misses

 If working set size > main memory size
▪ Thrashing: Performance meltdown, computer spends most of its

time copying pages in and out of RAM

▪ In the worst case, no forward progress at all (livelock)

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Mapped Files

 Paging = every page of a program’s physical RAM is
backed by some page of disk*

 Normally, those pages belong to swap space

 But what if some pages were backed by … files?

* This is how it used to work 20 years ago.
Nowadays, not always true.

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Mapped Files

Swap space

Physical

memory

Process

virtual memory

File on disk

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Mapped Files

Swap space

Physical

memory

Process 1

virtual memory

File on disk

Process 2

virtual memory

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Copy-on-write sharing

 fork creates a new
process by copying the
entire address space
of the parent process
▪ That sounds slow

▪ It is slow

Swap space

Physical

memory

Parent

virtual memory

File on disk

 Clever trick:
▪ Just duplicate the page tables

▪ Mark everything read only

▪ Copy only on write faults

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Copy-on-write sharing

Swap space

Physical

memory

Parent

virtual memory

File on disk

Child

virtual memory

 Clever trick:
▪ Just duplicate the page tables

▪ Mark everything read only

▪ Copy only on write faults

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Copy-on-write sharing

 Clever trick:
▪ Just duplicate the page tables

▪ Mark everything read only

▪ Copy only on write faults

Swap space

Physical

memory

Parent

virtual memory

File on disk

Child

virtual memory

Child
wrote to
this page

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Multi-level page tables

 Translation lookaside buffers

 Activity 1

 Concrete examples of virtual memory systems
▪ “Simple memory system” from CSAPP 9.6.4

▪ Intel Core i7

 Activity 2

 Nifty things virtual memory makes possible
▪ Paging/swapping (disk as extra RAM)

▪ Memory-mapped files (RAM as cache for disk)

▪ Copy-on-write sharing

 Activity 3

