Carnegie Mellon

System-Level 1/O: Supplemental Slides

15-213: Introduction to Computer Systems
215t Lecture, July 21, 2022

Instructors:
Zack Weinberg

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition b

Carnegie Mellon

Contents

B The RIO package (very helpful for proxy lab)
B More file descriptor examples
B Books with more detail (/ots more detail)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition b

The RIO Package (15-213/CS:APP Package)

B RIO is a set of wrappers that provide efficient and robust 1/0
in apps, such as network programs that are subject to short
counts

B RIO provides two different kinds of functions
= Unbuffered input and output of binary data
- rio readnandrio writen
= Buffered input of text lines and binary data
- rio readlinebandrio readnb

« Buffered RIO routines are thread-safe and can be interleaved
arbitrarily on the same descriptor

B Download from http://csapp.cs.cmu.edu/3e/code.html
- src/csapp.c and include/csapp.h

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition b

http://csapp.cs.cmu.edu/public/code.html

Unbuffered RIO Input and Output

B Same interface as Unix read and write
B Especially useful for transferring data on network sockets

#include "csapp.h"

ssize_ t rio_readn(int fd, void *usrbuf, size t n);
ssize_t rio writen(int fd, void *usrbuf, size t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

" rio_ readn returnsshort countonly if it encounters EOF
= Only use it when you know how many bytes to read
"= rio writen neverreturns ashort count

" Callstorio readnand rio writen can be interleaved arbitrarily on
the same descriptor

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition b

Carnegie Mellon

Implementation of rio readn
/*

* rio readn - Robustly read n bytes (unbuffered)

*/

ssize_ t rio_readn(int fd, void *usrbuf, size t n)

{

size t nleft = n;
ssize_t nread;
char *bufp = usrbuf;

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {

if (errno == EINTR) /* Interrupted by sig handler return */
nread = 0; /* and call read() again */
else
return -1; /* errno set by read() */
}
else if (nread == 0)
break; /* EOF */
nleft -= nread;

bufp += nread;

}
return (n - nleft); /* Return >= 0 */
csapp.c

}
b

Bryant and O’HaIIaron, Computer Systers—~R PTOBTAITIITIET 5 PEerSpecuve, T a COrtoTT

Carnegie Mellon

Buffered RIO Input Functions

H Efficiently read text lines and binary data from a file partially
cached in an internal memory buffer

#include '"csapp.h"
void rio_readinitb(rio_t *rp, int £d);

ssize t rio_readlineb(rio_t *rp, void *usrbuf, size t maxlen);
ssize t rio_readnb(rio t *rp, void *usrbuf, size t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

" rio readlineb reads a text line of up to maxlen bytes from file
f£d and stores the line in usrbuf
= Especially useful for reading text lines from network sockets
= Stopping conditions
- maxlen bytes read
- EOF encountered
- Newline (‘\n’) encountered

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition b

Carnegie Mellon

Buffered RIO Input Functions (cont)

#include "csapp.h"
void rio readinitb(rio_t *rp, int £d);

ssize t rio_readlineb(rio t *rp, void *usrbuf, size t maxlen);
ssize t rio readnb(rio t *rp, void *usrbuf, size t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

" rio readnb reads up to n bytes from file £d

= Stopping conditions
- maxlen bytes read

« EOF encountered

" Callstorio readlineb and rio_ readnb can be interleaved
arbitrarily on 1 the same descriptor

- Warning: Don’t interleave with callsto rio_readn

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition b

Carnegie Mellon

Buffered 1/0: Implementation

B For reading from file

H File has associated buffer to hold bytes that have been read
from file but not yet read by user code

< rio cnt -_—

Buffer | already read unread
rio buf D
- rio bufptr

B Layered on Unix file:

P

- Buffered Portion

\ 4

not in buffer already read unread unseen

L/

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition b

Current File Position

Buffered 1/0: Declaration

B All information contained in struct

< rio cnt -_—

Buffer

already read

rio_buf

rio bufptr [:

unread

typedef struct {
int rio_fd;
int rio_cnt;

} rio t;

char *rio bufptr;
char rio buf[RIO BUFSIZE]; /*

/*
/*
/*

descriptor for this internal buf */
unread bytes in internal buf */
next unread byte in internal buf */
internal buffer */

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

b

RIO Example

B Copying the lines of a text file from standard input to
standard output

#include "csapp.h"

int main(int argc, char **argv)
{
int n;
rio t rio;
char buf [MAXLINE] ;

Rio readinitb(&rio, STDIN FILENO) ;

while((n = Rio readlineb (&rio, buf, MAXLINE)) !'= 0)
Rio writen (STDOUT FILENO, buf, n);
exit (0) ;

} cpfile.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition b

Fun with File Descriptors (1)

#include "csapp.h"
int main(int argc, char *argv([])
{
int £d1, £d4d2, £d3;
char cl, c2, c3;
char *fname = argv[l];
fdl = Open(fname, O RDONLY, O0);
fd2 = Open(fname, O RDONLY, O0);
fd3 = Open(fname, O RDONLY, O0);
Dup2 (fd2, £d3);
Read (fdl, &cl, 1);
Read (fd2, &c2, 1);
Read (£d3, &c3, 1);
printf("cl = %c, ¢c2 = %c, e¢3 = %c\n", cl, c2, c3);
return O;

} ffilesl.c

B What would this program print for file containing “abcde”?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition b

Carnegie Mellon

Fun with File Descriptors (2)

#include '"csapp.h"
int main(int argc, char *argv|[])
{
int £di;
int s = getpid() & Ox1;
char cl, c2;
char *fname = argv|[l];
fdl = Open(fname, O RDONLY, O0);
Read (fdl, é&cl, 1);
if (fork()) { /* Parent */
sleep(s) ;
Read (fdl, &c2, 1);
printf ("Parent: cl = %c, c2 = %c\n", cl, c2);
} else { /* Child */
sleep(1l-s);
Read (fdl, &c2, 1);
printf ("Child: cl = %c, c¢2 = %c\n", cl, c2);
}
return 0O;
} ffiles2.c

B What would this program print for file containing “abcde”?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition b

Fun with File Descriptors (3)

#include '"csapp.h"
int main(int argc, char *argv([])

{

int £d1, £d2, £d3;

char *fname = argv[l];

fdl = Open(fname, O CREAT|O_TRUNC|O RDWR, S IRUSR|S_ IWUSR) ;
Write(fdl, "pgrs", 4);

fd3 = Open(fname, O APPEND|O WRONLY, O0);

Write (£d3, "jklmn", 5);

fd2 = dup(fdl); /* Allocates descriptor */

Write (£d2, "wxyz", 4);

Write (£d3, "ef", 2);

return O;
} ffiles3.c

B What would be the contents of the resulting file?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition b

Carnegie Mellon

I/O Questions in Exams

Problem 10. (6 points):
Unix /0.

A. Suppose that the disk file foobar.txt consists of the six ASCII characters “foobar”. What is the
output of the following program?

/* any necessary 1includes =/
char buf[20] = {0}; /* init to all zeroces */

int main(int argc, charx argv[]) {
int fdl = open("foobar.txt", O_RDONLY);
int fd2 = open("foobar.txt", O_RDONLY);

dup2z (fd2, f£dl);

read (fdl, buf, 3);

close (fdl); 3 3% 3k %k 3k 3k ok %k %k ok
read (fdz2, &bufl[3], 3);

close (1d2); Problem 10
printf ("buf = %s\n", buf); % 3 3k 3 ok ok %k %k ok %k

return 0;

) A. Output: buf = foobar

Output: buf =

Fall 2011 (model solution)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition b

http://www.cs.cmu.edu/~213/oldexams/final-f11.pdf
http://www.cs.cmu.edu/~213/oldexams/final-f11-sol.txt

Carnegie Mellon

Accessing Directories

B Most Unix 1/0 calls will fail if applied to a directory

= You can open() with special flags, but you can’t read() or write()!
= There’s a special APlin dirent.h just for directories

#include <sys/types.h>
#include <dirent.h>

{
DIR *directory;

struct dirent *de;

if (! (directory = opendir (dir name)))
error ("Failed to open directory") ;

while (0 !'= (de = readdir (directory))) {
printf ("Found file: %s\n", de->d name);

}

closedir (directory) ;
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition b

Carnegie Mellon

For Further Information

B The Unix bible:

= W. Richard Stevens & Stephen A. Rago, Advanced Programming in the
Unix Environment, 2"9 Edition, Addison Wesley, 2005

= Updated from Stevens’s 1993 classic text

B The Linux bible:

= Michael Kerrisk, The Linux Programming Interface, No Starch Press, 2010
= Encyclopedic and authoritative

B The GNU C Library Reference Manual

= https://www.gnu.org/software/libc/manual/html node/index.html
= Encyclopedic, well-written

= Not updated recently, but most of this stuff is old so it doesn’t matter

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition b

https://www.gnu.org/software/libc/manual/html_node/index.html

