
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course OverReview

15-213: Introduction to Computer Systems
28th Lecture, August 5, 2022



2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Theme:
Abstraction Is Good But Don’t Forget Reality
 Most CS and CE courses emphasize abstraction

▪ Abstract data types

▪ Asymptotic analysis

 These abstractions have limits
▪ Especially in the presence of bugs

▪ Need to understand details of underlying implementations

 Useful outcomes from taking 213
▪ Become more effective programmers

▪ Able to find and eliminate bugs efficiently

▪ Able to understand and tune for program performance

▪ Prepare for later “systems” classes in CS & ECE

▪ Compilers, Operating Systems, Networks, Computer Architecture, 
Embedded Systems, Storage Systems, etc.



3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Computer Arithmetic

 Does not generate random values

▪ Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties
▪ Due to finiteness of representations

▪ Integer operations satisfy “ring” properties

▪ Commutativity, associativity, distributivity

▪ Floating point operations satisfy “ordering” properties

▪ Monotonicity, values of signs

 Observation

▪ Need to understand which abstractions apply in which contexts

▪ Important issues for compiler writers and serious application programmers



4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

You’ve Got to Know Assembly

 Key to machine-level execution model

▪ Behavior of programs in presence of bugs

▪ High-level language models break down

▪ Tuning program performance

▪ Understand optimizations done / not done by the compiler

▪ Understanding sources of program inefficiency

▪ Implementing system software

▪ Compiler has machine code as target

▪ Operating systems must manage process state

▪ Creating / fighting malware

▪ x86 assembly is the language of choice!



5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Isn’t Random Access

 Memory is not unbounded

▪ It must be allocated and managed

▪ Many applications are memory dominated

 Memory performance is not uniform
▪ Cache and virtual memory effects can greatly affect program performance

▪ Adapting program to characteristics of memory system can lead to major 
speed improvements

 Memory referencing bugs especially pernicious
▪ Effects are distant in both time and space



6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Errors

 C and C++ do not provide any memory protection

▪ Out of bounds array references

▪ Invalid pointer values

▪ Abuses of malloc/free

 Can lead to nasty bugs

▪ Whether or not bug has any effect depends on system and compiler

▪ Action at a distance

▪ Corrupted object logically unrelated to one being accessed

▪ Effect of bug may be first observed long after it is generated

 How can I deal with this?
▪ Program in Java, Ruby, Python, ML, …

▪ Understand what possible interactions may occur

▪ Use or develop tools to detect referencing errors (e.g. Valgrind)



7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Constant Factors Matter

 Even exact op count does not predict performance

▪ Easily see 10:1 performance range depending on how code written

▪ Must optimize at multiple levels: algorithm, data representations, 
procedures, and loops

 Must understand system to optimize performance
▪ How programs compiled and executed

▪ How to measure program performance and identify bottlenecks

▪ How to improve performance without destroying code modularity and 
generality



8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Computers Don’t Just Compute

 They need to get data in and out

▪ I/O system critical to program reliability and performance

 They communicate with each other over networks
▪ Many system-level issues arise in presence of network

▪ Concurrent operations by autonomous processes

▪ Coping with unreliable media

▪ Cross platform compatibility

▪ Complex performance issues



9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Final Exam

 August 11th (NOT the 12th)

▪ 12:20—3:20pm, location TBD (will announce on Piazza)

 The focus is on the second half of the course
▪ IO

▪ Signals

▪ Processes

▪ Virtual Memory

▪ Malloc

▪ Threads

▪ Thread Synchronization

▪ Other



10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

IO

In the following code, a parent opens a file twice, then the child 
reads a character: 
char c; 

int fd1 = open("foo.txt", O_RDONLY); 

int fd2 = open("foo.txt", O_RDONLY); 

if (!fork()) { read(fd1, &c, 1); } 

Clearly, in the child, fd1 now points to the second character of 
foo.txt. Which of the following is now true in the parent? 

(a) fd1 and fd2 both point to the first character. 

(b) fd1 and fd2 both point to the second character. 

(c) fd1 points to the first character while fd2 points to the second character. 

(d) fd2 points to the first character while fd1 points to the second character



11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Signals
void sigint_handler(int sig) 

{

jid_t fg_jid = fg_job();

/* Masking signals */

sigset_t mask, prev_mask;

Sigfillset(&mask); 

Sigprocmask(SIG_BLOCK, &mask, &prev_mask); 

if (fg_jid != 0) { 

/* Sending a SIGINT signal for the process group. 

* Deleting the job. */

pid_t pid = job_get_pid(fg_jid); 

kill(-pid, SIGINT); 

delete_job(pid);

}

/* Unblocking the masked signals */

Sigprocmask(SIG_SETMASK, &prev_mask, NULL); 

}

Name three bugs in this code



12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Signals
void sigint_handler(int sig) 

{

jid_t fg_jid = fg_job();

/* Masking signals */

sigset_t mask, prev_mask;

Sigfillset(&mask); 

Sigprocmask(SIG_BLOCK, &mask, &prev_mask); 

if (fg_jid != 0) { 

/* Sending a SIGINT signal for the process group. 

* Deleting the job. */

pid_t pid = job_get_pid(fg_jid); 

kill(-pid, SIGINT); 

delete_job(pid);

}

/* Unblocking the masked signals */

Sigprocmask(SIG_SETMASK, &prev_mask, NULL); 

}

Name three bugs in this code

Job list API used with 
signals unblocked –

should be here instead

delete_job takes a JID,not a PID

delete_job should be called
from the SIGCHLD handler,

not here

errno not restored

errno not saved



13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Processes

What outputs are possible?  Is “15213”?

pid_t Fork(void) {

pid_t pid = fork();

if (pid == -1) exit(1);

return pid;

}

int main(void) {

setvbuf(stdout, 0, _IONBF, 0); // no buffering

if (Fork() == 0) { putchar('3'); return 0; }

putchar('5');

if (Fork() == 0) { putchar('2'); }

putchar('1');

return 0;

}



14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Processes

What outputs are possible?  Is “15213”?

pid_t Fork(void) {

pid_t pid = fork();

if (pid == -1) exit(1);

return pid;

}

int main(void) {

setvbuf(stdout, 0, _IONBF, 0); // no buffering

if (Fork() == 0) { putchar('3'); return 0; }

putchar('5');

if (Fork() == 0) { putchar('2'); }

putchar('1');

return 0;

}

3

5fork fork

2

1

1



15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Malloc

 First-fit allocator, with 16-byte alignment, 8-byte headers / 
footers, and prologue / epilogue.  After:
malloc(3)

malloc(11)

malloc(40)

free(40)

malloc(10)

 Draw the state of the heap in 8 byte units, label as header / 
footer (size, alloc or free), payload:

F HPpF HPPF HPPF hppf H

 What is the utilization for this allocator, versus 54 bytes?
At peak usage, Τ54

8⋅18 = Τ54
144 = 37.5% (ouch!)

 How much space would be saved by removing footers?
16 bytes (F HPpp HPPp HPPppp H) – alignment padding eats most of the benefit



16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Threads

 What is the range of value(s) 
that main will print?

There’s no synchronization, so 1 
and 2 are both possible.

 If we remove i from thread
and instead directly access 
count,  does the answer 
change?
No, this makes no difference.

int count = 0;

void *thread(void *unused) {

int i = count;

i = i + 1;

count = i;

}

int main(void) {

pthread_t tid[2];

for (int i = 0; i < 2; i++)

pthread_create(&tid[i], NULL,

thread, NULL);

for (int i = 0; i < 2; i++)

pthread_join(tid[i]);

printf ("%d\n", count);

return 0;

}



17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Virtual Memory

 Virtual addresses are 20 bits wide

 Physical addresses are 18 bits wide

 Page size is 1024 bytes

 TLB is 2-way set associative with 16 total entries

 Label each bit of a virtual address (Virtual Page offset, Virtual 
page number, TLB index, TLB tag):

NNNN NNNN NNoo oooo oooo

TTTT TTTi ii

 Given virtual address 0x04AA4, what happens?

VPN is 0x04A >> 2 = 0x12; TLB index is 2, tag is 02
PPN is 0x68
Phys addr is 0x68 << 10 | (0x04AA4 & 0x3FF) = 0x1A2A4


