Carnegie Mellon

Course OverReview

15-213: Introduction to Computer Systems
28t Lecture, August 5, 2022

5’

g

= VLV $.

—————

15-213"
e e e

<« ol AN g

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Course Theme:

Abstraction Is Good But Don’t Forget Reality

m Most CS and CE courses emphasize abstraction
= Abstract data types
= Asymptotic analysis

m These abstractions have limits

= Especially in the presence of bugs
= Need to understand details of underlying implementations

m Useful outcomes from taking 213
= Become more effective programmers
= Able to find and eliminate bugs efficiently
= Able to understand and tune for program performance
" Prepare for later “systems” classes in CS & ECE

= Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems, Storage Systems, etc.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Computer Arithmetic

m Does not generate random values
= Arithmetic operations have important mathematical properties

I (] I”

m Cannot assume all “usual” mathematical properties
= Due to finiteness of representations
" [nteger operations satisfy “ring” properties
= Commutativity, associativity, distributivity
" Floating point operations satisfy “ordering” properties
= Monotonicity, values of signs

m Observation

= Need to understand which abstractions apply in which contexts
" Important issues for compiler writers and serious application programmers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

You’'ve Got to Know Assembly

m Key to machine-level execution model
= Behavior of programs in presence of bugs
= High-level language models break down
® Tuning program performance
= Understand optimizations done / not done by the compiler
= Understanding sources of program inefficiency
" Implementing system software
= Compiler has machine code as target
= Operating systems must manage process state
= Creating / fighting malware
= x86 assembly is the language of choice!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Memory Isn’t Random Access

m Memory is not unbounded
" |t must be allocated and managed
" Many applications are memory dominated

m Memory performance is not uniform
= Cache and virtual memory effects can greatly affect program performance

= Adapting program to characteristics of memory system can lead to major
speed improvements

m Memory referencing bugs especially pernicious

= Effects are distant in both time and space

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Memory Referencing Errors

m C and C++ do not provide any memory protection
® Qut of bounds array references
" |nvalid pointer values
= Abuses of malloc/free

m Can lead to nasty bugs
= Whether or not bug has any effect depends on system and compiler
= Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated

m How can | deal with this?
" Program in Java, Ruby, Python, ML, ...
= Understand what possible interactions may occur
= Use or develop tools to detect referencing errors (e.g. Valgrind)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Constant Factors Matter

m Even exact op count does not predict performance
" Easily see 10:1 performance range depending on how code written
" Must optimize at multiple levels: algorithm, data representations,
procedures, and loops
m Must understand system to optimize performance
" How programs compiled and executed
" How to measure program performance and identify bottlenecks

" How to improve performance without destroying code modularity and
generality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Computers Don’t Just Compute

m They need to get data in and out
= |/O system critical to program reliability and performance

m They communicate with each other over networks

= Many system-level issues arise in presence of network

Concurrent operations by autonomous processes

Coping with unreliable media

Cross platform compatibility

Complex performance issues

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Final Exam

m August 177 (NOT the 12t)

= 12:20—3:20pm, location TBD (will announce on Piazza)

m The focus is on the second half of the course
= |0
= Signals
" Processes
= Virtual Memory
= Malloc
= Threads
" Thread Synchronization
= QOther

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

In the following code, a parent opens a file twice, then the child
reads a character:

char c;

int fdl = open("foo.txt", O RDONLY) ;

int fd2 = open("foo.txt", O RDONLY) ;

if (!fork()) { read(fdl, é&c, 1); }

Clearly, in the child, fd1 now points to the second character of
foo.txt. Which of the following is now true in the parent?

@ fd1l and fd2 both point to the first character.

v fd1l and fd2 both point to the second character.

0 fd1 points to the first character while fd2 points to the second character.
@) fd2 points to the first character while fd1 points to the second character

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Signals

void sigint handler (int sig)

{
jid t fg jid = fg job();

/* Masking signals */

sigset t mask, prev_mask;

Sigfillset (&mask) ;

Sigprocmask (SIG BLOCK, é&mask, &prev mask);

if (fg jid != 0) {
/* Sending a SIGINT signal for the process group.
* Deleting the job. */
pid t pid = job get pid(fg jid);
kill (-pid, SIGINT) ;
delete job(pid);

/* Unblocking the masked signals */
Sigprocmask (SIG SETMASK, &prev mask, NULL);

}
Name three bugs in this code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Signals errno not saved

void sigint_hand =TT 519) Job list APl used with
{ .

signals unblocked —
should be here instead

jid t fg jid = fg job();

/* Masking signals */

sigset t mask, prev mask;

Sigfillset (&mask) ;

Sigprocmask (SIG BLOCK, é&mask, &prev mask);

if (fg jid != 0) {
/* Sending a SIGINT signal for the process group.
* Deleting the job. */
pid t pid = job get pid(fg jid);
kill (-pid, SIGINT)

delete_job takes a JID,not a PID

delete job(pid); delete_job should be called
} from the SIGCHLD handler,
/* Unblocking the masked signals */ not here

Sigprocmask (SIG SETMASK, &prev mask, NULL);

}

errno not restored

Name three bugs in this code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Processes
What outputs are possible? Is “15213"?

pid t Fork(void) {
pid t pid = fork();
if (pid == -1) exit(1l);
return pid;
}
int main(void) {
setvbuf (stdout, 0, IONBF, 0); // no buffering
if (Fork() == 0) { putchar('3'); return 0; }
putchar ('5");
if (Fork() == 0) { putchar('2"'"); }
putchar ('1");

return 0;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Processes
What outputs s

pid t Fork(void)
pid t pid =
1f (pid ==

return pid;

int main(void) {

setvbuf (stdout, 0, IONBF, 0);

// no buffering

if (Fork() == 0) { putchar('3'); return 0; }

putchar ('5"'");

if (Fork() == 0) { putchar('2'"); }

putchar ('1");

return 0;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

14

Malloc

m First-fit allocator, with 16-byte alighment, 8-byte headers /
footers, and prologue / epilogue. After:
malloc(3)
malloc(11)
malloc(40)
free(40)
malloc(10)

m Draw the state of the heap in 8 byte units, label as header /
footer (size, alloc or free), payload:
F HPpF HPPF HPPF H

m What is the utilization for this allocator, versus 54 bytes?
At peak usage, °*/g.1g = >*/144 = 37.5% (ouch!)

m How much space would be saved by removing footers?
16 bytes (F HPpp HPPp HPPppp H) — alignment padding eats most of the benefit

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Threads

m What is the range of value(s) "t «u"t = 9
. . . void *thread(void *unused) {
that main will print?

int i = count;

There’s no synchronization, so 1 i=1+1;
and 2 are both possible. count = i;
}
int main(void) {
m If we remove i from thread pthread_t tid[2];
and instead directly access for (int 1 =65 1 < 2; i)
COunt, dOES the answer pthread create(&tid[i], NULL,
thread, NULL);
Change? for (int 1 = 0; 1 < 2; i++)
No, this makes no difference. pthread_join(tid[i]);

printf ("%d\n", count);

return 0;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Virtual Memory

m Virtual addresses are 20 bits wide

m Physical addresses are 18 bits wide

m Page size is 1024 bytes

m TLB is 2-way set associative with 16 total entries

m Label each bit of a virtual address (Virtual Page offset, Virtual
page number, TLB index, TLB tag):

TLB
NNNN NNNN NNoo oooo oooo Index || Tag PPN Valid
s s 0 03 C3 1
TTTT TTT1 11 o1 - 0
m Given virtual address 0x04AA4, what happens? | ! g? 28 i
35
VPN is Ox04A >> 2 =0x12; TLB index is 2, tag is 02 2 02 68 1
PPN is Ox68 3A° Fl 0
3 3 12 '
Phys addr is 0x68 << 10 | (0x04AA4 & Ox3FF) = 0x1A2A4 | ° | & 2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

