
Carnegie Mellon

1

The Future? of Computing
15-213: Introduction to Computer Systems
Last Lecture, Aug. 10, 2022

Carnegie Mellon

2

50 Years of “Moore’s Law”

Source: Our World in Data https://ourworldindata.org/technological-change

https://ourworldindata.org/technological-change

Carnegie Mellon

3

What Moore’s Law Has Meant

 1976 Cray 1
▪ 250 M Ops/second

▪ ~170,000 chips

▪ 0.5B transistors

▪ 5,000 kg, 115 KW

▪ $9M

▪ 80 manufactured

 2014 iPhone 6
▪ > 4 B Ops/second

▪ ~10 chips

▪ > 3B transistors

▪ 120 g, < 5 W

▪ $649

▪ 10 million sold in first 3 days

Carnegie Mellon

4

What Moore’s Law Has Meant

 1965 Consumer
Product

 2015 Consumer
Product

Apple A8 Processor
2 B transistors

Carnegie Mellon

5

Exponential trends can’t continue forever

Source: Wikipedia https://en.wikipedia.org/wiki/Instructions_per_second#Timeline_of_instructions_per_second

https://en.wikipedia.org/wiki/Instructions_per_second#Timeline_of_instructions_per_second

Carnegie Mellon

6

Exponential trends can’t continue forever

Carnegie Mellon

7

Clock rate → single thread performance

Carnegie Mellon

8

If all else fails, add parallelism…

Carnegie Mellon

9

This machine costs 150 million dollars

Carnegie Mellon

10

Exponential capital cost →
exponentially fewer manufacturers

Carnegie Mellon

11

Can’t outrun Amdahl

 Moore:
▪ Most CPU functions got faster simultaneously

▪ Memory density scaled too!

▪ I/O (& mem latency) was the primary bottleneck to work around

 Multicore:
▪ Parallelization bottleneck

 GPUs / SIMD
▪ Only some algorithms can be vectorized

Carnegie Mellon

12

The future of computing isn’t (only)
about speed anymore.

Carnegie Mellon

13

Four goals for the future of computing

Efficiency
 Wirth’s law: Each generation

of software is slower than the
previous generation

 Why?

 Can we reverse this trend?

Trustworthiness
 Computers work for us, but…

▪ Often they malfunction

▪ Sometimes they do what someone
else wants, against our interests

 Can we fix that?

Customizability
 The most powerful software

tools are the ones you can bend
to fit the way you think

 These tools are really hard to
develop

 Can we make that easier?

Accessibility
 Using computers to their full

potential takes years of training
▪ If you don’t speak English, can’t

afford always-on internet, etc. it’s
hard to get that training

 Can we make it easier?

Carnegie Mellon

14

Efficiency’s Worst Enemy: Code Bloat

G
e

ra
ld

 H
o

lz
m

an
n

, “
C

o
d

e
 In

fl
at

io
n

”,
 IE

EE
 S

o
ft

w
a

re
2

0
1

5

<h
tt

p
s:

//
ie

e
e

xp
lo

re
.i

e
ee

.o
rg

/d
o

cu
m

e
n

t/
70

57
5

73
>

Keep in mind that
one person’s bloat
is another person’s
essential feature

https://ieeexplore.ieee.org/document/7057573

Carnegie Mellon

15

Efficiency and Complexity

“Perfection is achieved not
when there is nothing
more to add, but when
there is nothing more to
remove.”

—Antoine de Saint
Exupéry

“In order to remain viable,
a system needs to generate
the same degree of internal
complexity as the external
complexity it faces in its
environment.”

—William Ashby
(as summarized by Boisot
and McKelvey)

Challenge for systems designers: remove all of the
unnecessary complexity—but none of the necessary
complexity

Carnegie Mellon

16

The Curse of Backward Compatibility

 Consider gets

▪ Cannot be used safely

▪ Already deprecated in
1989 C standard,
formally removed
in 1999

▪ Every C library still
implements it (yes,
even musl)

▪ Just in case someone
needs to run a really
old program…

Carnegie Mellon

17

The local newspaper website…

1166 HTTP requests
47 MB of data transferred
Still loading stuff in the background 1 minute after this screen stabilized

Carnegie Mellon

18

… without the ads

87 HTTP requests
7.4 MB of data transferred
No network activity after 1.5 seconds

Carnegie Mellon

19

Trustworthiness

Bugs reported to the National Vulnerability Database (USA), 2001–present
(only security-critical bugs are counted)

Carnegie Mellon

20

Trustworthiness (another angle)

“algorithm???
that thing where

social media sites get money from advertisers
the more shit you click on

so they shove content at you
that is theoretically to your interest

but actually is content that will keep you clicking,
including content that enrages you,

because they don't care about giving you shit you like
just about keeping you engaged as long as possible,

and oh also did we mention this ties into the modern lack of data privacy,
the algorithm is watching everything you interact with

to profile you better for advertising to you,
it's spying on you across platforms whenever possible,”

—Tumblr person @jmtorres

Carnegie Mellon

21

Trustworthiness (another angle)

Carnegie Mellon

22

Carnegie Mellon

24

No trust without comprehension

Carnegie Mellon

25

People are working on this one!

The Coq
Proof Assistant

Carnegie Mellon

26

Accessibility

 Remember when I had you run the sharks completely out
of RAM?
▪ And nothing particularly bad happened?

▪ And you learned some interesting things about virtual memory?

 Raise your hand if you know someone who is afraid to
experiment with their computer.

Carnegie Mellon

27

“Four freedoms” for software

 The freedom to run the program as you wish,
for any purpose

 The freedom to study how the program works,
and change it so it does your computing as you wish

 The freedom to redistribute copies so you can help others

 The freedom to distribute copies of your modified
versions to others

https://www.gnu.org/philosophy/free-sw.html#four-freedoms

programmers

https://www.gnu.org/philosophy/free-sw.html#four-freedoms

Carnegie Mellon

28

The first two freedoms for everyone

 Freedom to run the program…
▪ Fine as is at first glance

▪ But what about: freedom to keep the version of the program that
worked the way you were used to?

▪ While still receiving bug fixes?

 Freedom to study and modify the program…
▪ Assumes you have the skills and the confidence

▪ Freedom to experiment without fear of catastrophe?

▪ Freedom to ask basic questions without being sneered at?

▪ Not everyone wants the skills

▪ I can hire a handyman to patch a hole in my wall,
why is there no equivalent?

Carnegie Mellon

29

People are also working on this one!

BUT: These are all
special-purpose tools
and educational efforts.

We don’t even have a
plan for the general
problem.

Carnegie Mellon

30

Customizability
This is what my text editor looks like.
I write everything (except PowerPoint decks ;-) in this interface.

Carnegie Mellon

31

Customizability

 This is what the same
editor looks like if I
start it up without any
customization.

 I’ve written hundreds
of lines of Lisp to get
this thing exactly the
way I want it.

 Most of that is about
behavior, not
appearance.

Carnegie Mellon

32

Application developers hate customizability

 With good reason: it
can be 10-100x extra
testing work for them.

 Quotes on the right
are only talking about
visual tweaks, not
Emacs-level “redefine
every single
keystroke”
customizability

“The basic issue we’re arguing about is whether
it’s possible to restyle applications automatically,
at scale, without breaking them. In this post I’ll
try to explain why I think that it isn’t possible,
and why trying to do it is hurting our ecosystem.”

https://blogs.gnome.org/tbernard/2018/10/15/r
estyling-apps-at-scale/

“Over the years FreeDesktop platforms have
come a long way in terms of usability and as we
strive to make them better platforms for
application developers, I think it’s time to shed
one more shackle that slows that down: themes.”

https://samuelhewitt.com/blog/2018-08-05-
moving-beyond-themes

https://blogs.gnome.org/tbernard/2018/10/15/restyling-apps-at-scale/
https://samuelhewitt.com/blog/2018-08-05-moving-beyond-themes

Carnegie Mellon

33
Image from ch. 11 of https://www.forth.com/starting-forth/

https://www.forth.com/starting-forth/

