
Carnegie Mellon

15-213 Attack Lab
Bootcamp

Your TAs
Tuesday, June 7th, 2022

Carnegie Mellon

Agenda

■ Attack Lab Overview

■ Stacks Review

■ Activity 1

■ Procedure Calling Review

■ Activity 2

■ Activity 3 (If time)

Carnegie Mellon

Learning objectives

By the end of this bootcamp, we want you to
know:

■ Stack discipline and calling conventions

■ How to perform a simple buffer overflow attack

Carnegie Mellon

Reminders and Lab Overview

Carnegie Mellon

Reminders

■ Attack Lab is due this Friday, June 10
■ C Review Bootcamp this Friday,June. 10

■ Will be very useful for cachelab coming up!

Carnegie Mellon

Attack Lab overview

■ Attack programs by crafting buffer overflow attacks
that hijack the control flow

■ Provide inputs to the rtarget and ctarget
programs that cause them to call certain functions

■ Unlike in bomblab, the targets don't explode!

Carnegie Mellon

Stacks Review

Carnegie Mellon

Manipulating the stack

What instructions do we typically use to change the
stack pointer, %rsp?

Growing the stack: Shrinking the stack:

Carnegie Mellon

Manipulating the stack

What instructions do we typically use to change the
stack pointer, %rsp?

Growing the stack: Shrinking the stack:
■ sub $0x28, %rsp
■ push %rbx
■ callq my_function

Carnegie Mellon

Manipulating the stack

What instructions do we typically use to change the
stack pointer, %rsp?

Growing the stack: Shrinking the stack:
■ sub $0x28, %rsp
■ push %rbx
■ callq my_function

■ add $0x28, %rsp
■ pop %rbx
■ retq

What does a stack frame look like?
1. Caller pushes arguments 7+ if they exist

2. Caller executes callq <addr>, pushing next instruction
address (return address) onto stack and jumping to addr

3. Callee optionally pushes %rbp, address of start of previous
stack frame (sometimes optimized out)

4. Callee may push saved registers, local variables

Carnegie Mellon

Which way does the stack grow?

■ Up?
■ Down?
■ Left?
■ Right?

http://www.stackgrowsup.com/
http://www.stackgrowsdown.com/
http://www.stackgrowsleft.com/
http://www.stackgrowsright.com/

Carnegie Mellon

Which way does the stack grow?

■ Up?
■ Down?
■ Left?
■ Right?

It depends on how you draw it!

The stack always grows towards
lower addresses in x86-64.
(Informally, this usually means "down".)

Be aware of this possible
ambiguity when reading diagrams.

http://www.stackgrowsup.com/
http://www.stackgrowsdown.com/
http://www.stackgrowsleft.com/
http://www.stackgrowsright.com/

Carnegie Mellon

Drawing memory

Stack diagrams Everything else

Addresses are displayed increasing to the
left, and then upwards.

Addresses are displayed increasing to the
right, and then downwards.

Carnegie Mellon

Endianness
■ Describes how integers are represented as bytes.
■ Little-endian means that the least significant bytes of

and integer are stored at the lowest address.

A[0] A[1] A[2] A[3]

Little-endian

Big-endian

32-bit integer

0x01020304
"Big end" "Little end"

*A means address

Carnegie Mellon

Endianness

0x04 0x03 0x02 0x01

A[0] A[1] A[2] A[3]

0x01 0x02 0x03 0x04

Little-endian

Big-endian

32-bit integer

0x01020304
"Big end" "Little end"

■ Describes how integers are represented as bytes.

■ Little-endian means that the least significant bytes of an integer are
stored at the lowest address.

■ Shark machines use little-endian, so that is what you will work with in
attack lab.

○ Reverse how addresses look in exploit string
*A means address

Carnegie Mellon

Activity 1

Carnegie Mellon

Part 1: Introduction to solve()

Let's look at solve() in
the src/activity.c
file.

What is it doing?

Is it possible for the
program to call win()?

void solve(void) { long
before = 0xb4; char
buf[16];
long after = 0xaf;

Gets(buf);

if (before == 0x3331323531)
win(0x15213);

if (after == 0x3331323831)
win(0x18213);

}

Carnegie Mellon

Part 1: The gets() function
char *gets(char *s);

■ gets() reads from standard input and writes
characters into s until it reaches a newline.

■ Since it has no information about the size of the buffer
s, its design is fundamentally flawed. Input that is too
long will overflow past the space allocated for the
buffer and cause nasty things to happen. Never use
gets() yourself!

■ Gets() is a CS:APP wrapper function that checks for
errors, and exits if it encounters any.

Carnegie Mellon

Part 1: Activity setup

■ Split up into groups of 2-3 people

■ One person needs a laptop

■ Log in to a Shark machine, and type:
$ wget
https://www.cs.cmu.edu/~213/activities/attack-lab-activity.
tar
$ tar xvf attack-lab-activity.tar
$ cd attack-lab-activity

■ Take a look at the code in src/activity.c.

https://www.cs.cmu.edu/~213/activities/rec5.tar
https://www.cs.cmu.edu/~213/activities/rec5.tar

Carnegie Mellon

Part 1: Diving into assembly

■ Look at the disassembly of solve().

■ Try drawing a stack diagram.

■ How large is the stack frame?

■ Where is the saved return address?

■ Where are before, buf, and after?

■ Which variable will be overwritten if we perform a
buffer overflow, before or after?

Hex Char

Carnegie Mellon

Part 1: Drawing the stack diagram

=> 0x4006b5 <+0>: sub $0x38,%rsp return address rsp+0x38
rsp

Addresses
increase towards

the top of the slide

Carnegie Mellon

Part 1: Drawing the stack diagram

return address0x4006b5 <+0>: sub $0x38,%rsp
=> 0x4006b9 <+4>: movq $0xb4,0x28(%rsp)

rsp+0x38

rsp

Addresses
increase towards

the top of the slide

Carnegie Mellon

Part 1: Drawing the stack diagram

return address

before

0x4006b5 <+0>: sub $0x38,%rsp
0x4006b9 <+4>: movq $0xb4,0x28(%rsp)

=> 0x4006c2 <+13>: movq $0xaf,0x8(%rsp)

rsp+0x38

rsp+0x28

rsp

Addresses
increase towards

the top of the slide

Carnegie Mellon

Part 1: Drawing the stack diagram

return address

before

after

0x4006b5 <+0>: sub $0x38,%rsp
0x4006b9 <+4>: movq $0xb4,0x28(%rsp)
0x4006c2 <+13>: movq $0xaf,0x8(%rsp)
0x4006cb <+22>: lea 0x10(%rsp),%rdi

=> 0x4006d0 <+27>: callq 0x40073f <Gets>

rsp+0x38

rsp+0x28

rsp+0x8

rsp

Addresses
increase towards

the top of the slide

Carnegie Mellon

Part 1: Drawing the stack diagram

return address

before

buf

buf

after

0x4006b5 <+0>: sub $0x38,%rsp
0x4006b9 <+4>: movq $0xb4,0x28(%rsp)
0x4006c2 <+13>: movq $0xaf,0x8(%rsp)
0x4006cb <+22>: lea 0x10(%rsp),%rdi
0x4006d0 <+27>: callq 0x40073f <Gets>

=> 0x4006d5 <+32>: mov 0x28(%rsp),%rdx

rsp+0x38

rsp+0x28

rsp+0x8

rsp+0x10

rsp

Addresses
increase towards

the top of the slide

Carnegie Mellon

Part 1: Comparing with GDB output

return address

before

buf

buf

after

Let's compare the stack diagram
we drew with the actual values on
the stack after Gets() returns.

0x4006d0 <+27>: callq 0x40073f <Gets>
=> 0x4006d5 <+32>: mov 0x28(%rsp),%rdx

(gdb) break *0x4006d5
(gdb) run
Starting program: act1
abcdefgh12345678
(gdb) x/8gx $rsp
(gdb) x/64bx $rsp

rsp+0x38

rsp+0x28

rsp+0x8

rsp+0x10

rsp

Carnegie Mellon

Part 1: Comparing with GDB output

return address

before

buf

buf

after

(gdb) x/8gx $rsp
0x602020: 0x0000000000000000 0x00000000000000af
0x602030: 0x6867666564636261 0x3837363534333231
0x602040: 0x0000000000000000 0x00000000000000b4
0x602050: 0x0000000000000000 0x0000000000400783

(gdb) x/64bx $rsp

0x602020: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x602028: 0xaf 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x602030: 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68
0x602038: 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38
0x602040: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x602048: 0xb4 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x602050: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x602058: 0x83 0x07 0x40 0x00 0x00 0x00 0x00 0x00

rsp+0x38

rsp+0x28

rsp+0x10

rsp+0x8

Addresses
increase towards
top of the slide

Addresses
increase towards
bottom of the slide

rsp

Carnegie Mellon

Part 1: Comparing with GDB output

return address

before

buf

buf

after

(gdb) x/8gx $rsp
0x602020: 0x0000000000000000 0x00000000000000af
0x602030: 0x6867666564636261 0x3837363534333231
0x602040: 0x0000000000000000 0x00000000000000b4
0x602050: 0x0000000000000000 0x0000000000400783

(gdb) x/64bx $rsp

0x602020: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x602028: 0xaf 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x602030: 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68
0x602038: 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38
0x602040: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x602048: 0xb4 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x602050: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x602058: 0x83 0x07 0x40 0x00 0x00 0x00 0x00 0x00

rsp+0x38

rsp+0x28

rsp+0x10

rsp+0x8

Addresses
increase towards
top of the slide

Addresses
increase towards
bottom of the slide

rsp

1. Input one byte at a time
 2. Input one byte at a time
 3. Input one byte at a time

Remember Endianness!

Carnegie Mellon

Part 1: Comparing with GDB output

return address

before

buf

buf

after

(gdb) x/8gx $rsp
0x602020: 0x0000000000000000 0x00000000000000af
0x602030: 0x6867666564636261 0x3837363534333231
0x602040: 0x0000000000000000 0x00000000000000b4
0x602050: 0x0000000000000000 0x0000000000400783

(gdb) x/64bx $rsp

0x602020: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x602028: 0xaf 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x602030: 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68
0x602038: 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38
0x602040: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x602048: 0xb4 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x602050: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x602058: 0x83 0x07 0x40 0x00 0x00 0x00 0x00 0x00

rsp+0x38

rsp+0x28

rsp+0x10

rsp+0x8

Addresses
increase towards
top of the slide

Addresses
increase towards
bottom of the slide

rspRemember Endianness!

Read the whole word this way

Carnegie Mellon

Part 1: Exploitation

■ Try to find an input string that wins 1 cookie!

■ What do we need to overwrite before with if we want
to have before == 0x3331323531?

■ Constructing an exploit

■ gets() stops reading once it sees a newline. In the buffer,
it replaces the newline with a null terminator.

■ gets() does not stop reading at a null terminator.

Putting together your input

● You want to directly change the bytes on the stack.
● However, gets() only accepts ascii characters as input
● To get around this? Use hex2raw, which is provided for you!

Bytes of code
(.txt file) ./hex2raw

Binary representation
of ascii characters

(.bin)
Goes into Gets() input

For this activity, ./hex2raw is automatically run when using make, so after you
make all you have to do is do is
(gdb) run < inputs/input1.bin

Carnegie Mellon

Part 1: Recap

■ Buffer overflows can overwrite parts of the stack
frame, including other local variables

■ Stack frames may include padding, so looking at the
assembly is crucial to drawing a correct diagram

■ GDB prints output starting at the lowest address,
whereas our stack diagrams start at the highest

Carnegie Mellon

Procedure Calling Review

Carnegie Mellon

Call and return instructions

Which registers do callq and retq change?

%rax

%rdx

%rcx

%r8

%r9

%r10

%r11

%rdi

%rsi

%rbx

%rsp

%rbp

%r12

%r13

%r14

%rip

Carnegie Mellon

Call and return instructions

Which registers do callq and retq change?

%rax

%rdx

%rcx

%r8

%r9

%r10

%r11

%rdi

%rsi

%rbx

%rsp

%rbp

%r12

%r13

%r14

%rip

Carnegie Mellon

Stack/Procedure Review

0000000000400550 <mult2>:
400550: mov %rdi,%rax
•
•
400557
:

retq

0000000000400540 <multstore>:
•
•

=>400544: callq 400550 <mult2>
400549: mov%rax,(%rbx)
•
•

0x400544

0x120

•
•
•

%rsp

0x130

0x128

0x120

%rip

Carnegie Mellon

Stack/Procedure Review

0000000000400550 <mult2>:
400550: mov %rdi,%rax
•
•
400557
:

retq

0000000000400540 <multstore>:
•
•

=>400544: callq 400550 <mult2>
400549: mov%rax,(%rbx)
•
•

0x400544

0x120

•
•
•

%rsp

0x130

0x128

0x120

%rip

What happens next?

Carnegie Mellon

0000000000400550 <mult2>:
=>400550: mov %rdi,%rax
•
•
400557
:

retq

0000000000400540 <multstore>:
•
•
400544: callq 400550 <mult2>
400549: mov%rax,(%rbx)
•
•

0x400550

0x118

0x400549

•
•
•

%rsp

0x130

0x128

0x120

0x118

%rip

Stack/Procedure Review

Return addr pushed onto
stack

%rip set to
arg

Carnegie Mellon

0000000000400550 <mult2>:
400550: mov %rdi,%rax
•
•

=>400557
:

retq

0000000000400540 <multstore>:
•
•
400544: callq 400550 <mult2>
400549: mov%rax,(%rbx)
•
•

0x400557

0x118

0x400549

•
•
•

%rsp

0x130

0x128

0x120

0x118

%rip

Stack/Procedure Review

Carnegie Mellon

0000000000400550 <mult2>:
400550: mov %rdi,%rax
•
•
400557
:

retq

0x400549

0x120

0x400549

•
•
•

%rsp

0x130

0x128

0x120

0x118

%rip

Stack/Procedure Review

Stack pop to
%rip

0000000000400540 <multstore>:
•
•
400544: callq 400550 <mult2>

=>400549: mov %rax,(%rbx)
•
•

Carnegie Mellon

0000000000400550 <mult2>:
mov %rdi,%rax400550:

• ?????
• ?????

=>400557: retq

0000000000400540 <multstore>:
•
•
400544: callq 400550 <mult2>
400549: mov%rax,(%rbx)
•
•

0x400557

0x118

0xbadbad

•
•
•

%rsp

0x130

0x128

0x120

0x118

%rip

Let’s Rewind…

What if we mess up the return address?

Carnegie Mellon

Activity 2

Carnegie Mellon

Part 2: Exploitation

■ Hijacking control flow

■ Is it possible to overwrite after? If not, what parts of the
stack frame can we overwrite?

■ Is there anywhere we could jump to call win(0x18213)?

■ Constructing an exploit
inputs/input2.txt

48 65 6c 6c 6f 20 31 35
32 31 33 21 # comment

inputs/input2.bin

Hello 15213!make
(runs hex2raw)

Carnegie Mellon

Part 2: Exploitation
void solve(void)

{ long before
= 0xb4; char
buf[16];
long after = 0xaf;

Gets(buf);

if (before ==
0x3331323531)
win(0x15213);

if (after ==
0x3331323831)
win(0x18213);

■ Hijacking control flow

■ Is it possible to overwrite after? If not,
what parts of the stack frame can we
overwrite? No, the buffer is stored at a
higher memory address than after.

■ Is there anywhere we could jump to call
win(0x18213)? We can overwrite the
return address to return to just after the
conditional where we call win(0x18213)

Part 2: Exploitation

● Organize back into your groups and try to call win(0x18213)
to earn 2 cookies!

● Hint: gdb activity again and disassemble solve. (gdb) disas
solve

● Find out what address you need to return to in order to call
win(0x18213), and overwrite the return address of solve to
return to that.

Solution

● Disassembling solve, we see that at
address 0x0000000000400707 we
move 0x18213 to %rdi and call win.

● We need to overwrite the return
address of solve, which is 40 bytes
past where we read into from gets.

Carnegie Mellon

Part 2: Recap

■ retq always jumps to the saved return
address, which it pops off the stack (at rsp).

■ Overwriting the saved return address on the stack
allows us to "fool" retq, and transfer control to an
arbitrary instruction.

Carnegie Mellon

Activity 3
(If Time)

Part 3: Return Oriented Programming

● Goal: call win(0x18613)

● Notice the suspiciously named function gadget1
○ (gdb) disas gadget1

● Can we return to this code and use it so that our first argument to win is
0x18613?

Solution

● We notice gadget1 conveniently
pops a value from the stack and
stores it in %rdi

● We can store 0x18613 on the stack,
overwrite the original return address
of solve to return to gadget1, have
gadget1 pop 0x18613 into %rdi,
then have gadget1 return to the call
to win at address
0x000000000040070c

Carnegie Mellon

Attack Lab
Tools■ $ gcc –c test.s

$ objdump –d test.o
Compiles the assembly code in test.s, then shows the disassembled
instructions along with the actual bytes.

■ $./hex2raw < exploit.txt > exploit.bin
Convert hex codes into raw binary strings to pass to targets.

■ (gdb) display /12gx $rsp
(gdb) display /2i $rip
Displays 12 elements on the stack and the next 2 instructions to run
GDB is also useful to for tracing to see if an exploit is working.

Carnegie Mellon

If you get stuck

■ Please read the writeup carefully. Not everything
will make sense on the first read-through.

■ Other resources you can make use of:

■ CS:APP Chapter 3

■ Lecture slides and videos

■ x86-64 and GDB cheat sheets under Resources

https://www.cs.cmu.edu/~213/resources.html

