
Software Design
Kyle Liang

Adapted from Michael Hilton

What is (good)
Software Design?

Definition of software design
A good software design goes beyond functional correctness, and considers such
quality attributes as:
– Performance
– Availability
– Modifiability, portability
– Scalability
– Security
– Testability
– Usability
– Cost to build, cost to operate

Controversial Statement:

A good design is a testable
design

Good Design is about:
Complexity Management

&
Communication

Complexity Management
There are well known limits to how much complexity a human can manage easily.

Complexity Management
However, patterns can be very helpful...

Complexity Management
Many techniques have been developed to help manage complexity:

● Separation of concerns
● Modularity
● Reusability
● Extensibility
● DRY
● Abstraction
● Information Hiding
● ...

Communication
When writing code, the author is communicating with:

● The machine
● Other developers of the system
● Code reviewers
● Their future self

Communication
There are many techniques that have been developed around code
communication:

● Comments
● Naming
● Tests
● Commit Messages
● Code Review
● Design Patterns
● ...

Why is a testability the measure of a good design?

“The act of writing a unit test is more an act of design than of verification.

It is also more an act of documentation than of verification.

The act of writing a unit test closes a remarkable number of feedback loops, the
least of which is the one pertaining to verification of function”.

-Agile Software Development, Principles, Patterns, and Practices

Why are CONTRACTS the measure of a good design?

“The act of writing a contract is more an act of design than of verification.

It is also more an act of documentation than of verification.

The act of writing a contract closes a remarkable number of feedback loops, the
least of which is the one pertaining to verification of function”.

-Agile Software Development, Principles, Patterns, and Practices

Testing vs Contracts
Testing is more commonly used in industry.

The most important thing is to think about your code, document intentions,
design it well.

Testing and Contracts should not be seen as competitors, but as collaborators
towards better code.

Running Example: Battleship

Quick Demo

In groups of 3-4, come up with a design of the Battleship game.

What are the high-level functions?

How would you test these functions?

Activity

Look at Example Code

Concerns about design?

Is the complexity manageable?

Is it clear what the author wanted to do?

Activity
Observe the changes to the
design as we attempt to test.

Your Turn
In groups, refactor 2 functions in

Program.c such that they are testable

Naming

static void print(Brd *b)

{

 printf(" ");

 int i;

 for (i = 1; i <= b->len; i ++)

 {

 printf(",%d", i);

 }

 printf("\n");

 int k;

 for (k = 0; k < b->len; k ++)

 {

 printf("%c", 'a' + k);

 int j;

 for (j = 0; j < b->len; j ++)

 {

 printf(" %c", b->data[k][j]->s);

 }

 printf("\n");

 }

}

Avoid deliberately meaningless names:

Naming is understanding

“If you don’t know what a thing should be called,
you cannot know what it is.

If you don’t know what it is, you cannot sit down
and write the code.”

-Sam Gardiner

Better naming practices
1. Start with meaning and intention
2. Use words with precise meanings (avoid “data”, “info”, “perform”)
3. Prefer fewer words in names
4. Avoid abbreviations in names
5. Use code review to improve names
6. Read the code out loud to check that it sounds okay
7. Actually rename things

Naming guidelines - Use dictionary words
Only use dictionary words and abbreviations that appear in a dictionary.

For example: FileCpy -> FileCopy

Avoid vague abbreviations such as acc, mod, auth, etc..

Avoid using single-letter names
Single letters are unsearchable

Give you no hints as to its use.

Exceptions are loop counters

Limit Name character length
“constraints breed creativity”

“Good naming limits individual name length, and reduces the need for specialized
vocabulary” - Philip Relf

Limit name word count
Keep names to a four word maximum

Limit names to the number of words that people can read at a glance.

Describe Meaning
Use descriptive names.

Avoid names with no meaning: a, foo, blah, tmp, etc

Use a large vocabulary
Be more specific when possible:

Person -> Employee

Use problem domain terms
Use the correct term in the problem domain’s language.

(HINT, as a student, consider the terms in the assignment)

Use opposites precisely
Consistently use opposites in standard pairs.

first/end -> first/last

Comments
1) Don’t say what the code does (because the code already says that)
2) Don’t explain awkward logic (improve the code to make it clear)
3) Don’t add too many comments (it’s messy, and they get out of date)

Explain why code exists
When should I use this code?

When shouldn’t I use it?

What are the alternatives to this code?

static void print(Brd *b)

{

 printf(" ");

 int i;

 for (i = 1; i <= b->len; i ++)

 {

 printf(",%d", i);

 }

 printf("\n");

 int k;

 for (k = 0; k < b->len; k ++)

 {

 printf("%c", 'a' + k);

 int j;

 for (j = 0; j < b->len; j ++)

 {

 printf(" %c", b->data[k][j]->s);

 }

 printf("\n");

 }

}

Quiz:
https://www.cs.cmu.edu/~213/variableNaming

How to write good comments
1. Try to write good code first
2. Try to write a one-sentence comment
3. Refactor the code until the comment is easy to write
4. Now write a good comment
5. Maintain your code AND your comments

