Carnegie Mellon

Bits, Bytes, and Integers — Part 2

15-213/14-513/15-513: Introduction to Computer Systems
3" Lecture, January 25, 2022

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Assignment Announcements

m Lab 0 available via Autolab.
= Due today Tuesday, January 25, 11:59pm ET

= No grace days
= No late submissions

m Lab 1 available via Autolab

= Released

Due Thursday, February 3, 11:59pm

Read instructions carefully: writeup, bits.c, tests.c
= Quirky software infrastructure

Based on lectures 2 and 3 (CS:APP Chapter 2.1-2.3)

Avoid catshark and blueshark for datalab

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

https://autolab.andrew.cmu.edu/courses/15213-f21/
https://autolab.andrew.cmu.edu/courses/15213-f21/

Carnegie Mellon

Lecture slides

m Starting today, lecture slides will be posted right before

each lecture.
= This is an experiment for this term.
= We can’t promise to post slides any earlier than “right before”
= Sometimes we have to edit the slides at the last possible
minute
= |f you want to come prepared with questions:
= Base them on the textbook!

= Readings for each lecture are posted on schedule.html
for the entire semester

= You can also look at slides for previous semesters

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

https://www.cs.cmu.edu/~213/schedule.html

Carnegie Mellon

GDB Bootcamp

m When: Sunday January 30 @ 7-9pm ET / 4-7pm PT

m Where:
https://cmu.zoom.us/j/96556340854?pwd=KOdFMFNXUOt
XUkdNVW1tLZ3ZseDBNZz09

m Who: Youl!

m Why: This will greatly help with bomblab and attacklab!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

https://cmu.zoom.us/j/96556340854?pwd=K0dFMFNXU0txUkdNVWtLZ3ZseDBNZz09

Carnegie Mellon

Summary From Last Lecture

m Representing information as bits
m Bit-level manipulations

m Integers
= Representation: unsigned and signed
= Conversion, casting
= Expanding, truncating previous lecture

= Addition, negation, multiplication, shifting today
m Representations in memory, pointers, strings
m Summary

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Encoding Integers

Unsigned Two’s Complement
w—l1 . w—=2 i
BRUKX) = Y x-2 BT(X) = —x, 2"+ > x -2
: \ZO

Sign Bit
Two’s Complement Examples (w = 5)

-16 8 4 2 1

10= 0 1 0 1 O 8+2 10

-16 8 4 2 1
-10 =1 0 1 1 O -16+4+2 = -10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Unsighed & Signed Numeric Values

X B2U(x) | B2T(X) m Equivalence
0000 0 0 = Same encodings for nonnegative
0001 1 1 values
D 2 2 m Uniqueness
0011 3 3
0100 4 4 = Every bit pattern represents
0101 5 5 unique integer value
0110 6 6 = Each representable integer has
0111 7 7 unique bit encoding
1000 8 = m Expression containing signed
1001 9 7 d unsiened int:
1010 o —~ and unsigned int:
1011 11 o intis casttounsigned
1100 12 —4
1101 13 -3
1110 14 -2
1111 15 -1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Sign Extension and Truncation

m Sign Extension

AN
S
v

x LI] eee JJT]]

Yy v Yy ¥ v
'
Ll eee JTTTT] oee]|

& = L =~

m Truncation

P
<

k >< w
X [l ITTTTIT] D HEE

A 2 v v v v A 2

X ! I I I I s 00 I I I I
P L

- w i

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

m Misunderstanding integers
can lead to the end of the N
world as we know it!

m Thule (Qaanaaq), Greenland

m US DoD “Site J” Ballistic
Missile Early Warning
System (BMEWS)

10/5/60: world nearly ends
Missile radar echo: 1/8s
BMEWS reports: 75s echo(!)
1000s of objects reported
NORAD alert level 5:

" |mmediate incoming nuclear | s
b * N ¢ % ‘.‘ ‘:.'
attack!!!! ; \\ 9 /7

Q
£

:‘ -'j‘,
\°\//

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

]H[fanan)

: ;Au:ch S TOP SECRET
ILITARY RESEARCH AGENCY.

m Kruschev was in NYC 10/5/60 (weird time to attack)

"= someone in Qaanaagq said “why not go check outside?”
“Missiles” were actually THE MOON RISING OVER NORWAY
Expected max distance: 3000 mi; Moon distance: .25M miles!
.25M miles % sizeof(distance) = 2200mi.
m Overflow of distance nearly caused nuclear apocalypse!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Representing information as bits
m Bit-level manipulations

m Integers
® Representation: unsigned and signed
® Conversion, casting

" Expanding, truncating previous lecture

= Addition, negation, multiplication, shifting today
m Representations in memory, pointers, strings
m Summary

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Unsigned Addition

Operands: w bits u ==
+ vV coe
True Sum: w+1 bits 3+ v -
Discard Carry: whbits ~ UAdd (u , v) Y .
>
.. : o o°°\6:e3\°%6
m Standard Addition Function 5T 0 T 0000
" |gnores carry output é ; 8823
m Implements Modular Arithmetic a4 o100
s = UAdd,(u, V) = u+v mod2%¥ 2 2 8123
7 7 0111
unsigned char 1110 1001 E9 233 T
+ 1101 0101 + D5 + 213 A |10] 1010
B |11 | 1011
C |12 | 1100
D |13]| 1101
E |14 | 1110
F |15 | 1111

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Unsigned Addition

Operands: w bits u ==
+ vV coe
True Sum: w+1 bits 3+ v -
Discard Carry: whbits ~ UAdd (u , v) Y .
>
- . & o°°\6:e3\°%6
m Standard Addition Function 5T 0 T 0000
" |gnores carry output é ; 8823
m Implements Modular Arithmetic a4 o100
s = UAdd,(u, V) = u+v mod2%¥ 2 2 81%
7 7 0111
unsigned char 1110 1001 E9 233 S
+ 1101 0101 + D5 + 213 A [10 [1010
B (11 | 1011
1 1011 1110 1BE 446 C |12 | 1100
1011 1110 BE 190 g fia|iito
F |15 | 1111

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Visualizing (Mathematical) Integer Addition

m Integer Addition Add,(u, v)

= 4-bit integers uv Integer Addition

" Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

" Forms planar surface

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Visualizing Unsighed Addition
m Wraps Around Overflow

" |f true sum = 2% \

= At most once

True Sum
2W+1--
Overflow
2V T __ I
0 1

Modular Sum

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Two’s Complement Addition

Operands: w bits u 2o
+ v o 00

True Sum: w+1 bits
u + V o000
Discard Carry: w bits TAdd, (u, v) XK

m TAdd and UAdd have Identical Bit-Level Behavior

= Signed vs. unsigned addition in C:
int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t=u+v
= Willgive s == 1110 1001 E9 -23
+ 1101 0101 + D5 + -43
1 1011 1110 1BE -66

1011 1110 BE -66

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

TAdd Overflow

m Functionality True Sum
" True sum requires w+1 0111.1 2"-1 T
bits oo TAdd Result
= Drop off MSB 0100..0 2W-1-1 + T o011.1
" Treat remaining bits as
2’s comp. integer 0 000...0 0 + + 000..0
1011...1 _2W—1 - .. 100...0
1 000...0 _ow L1 NegOver

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Visualizing 2’s Complement Addition

NegOver

m Values
= 4-bit two’s comp.

= Range from -8 to +7

m Wraps Around
= |f sum > 2wt
= Becomes negative
= At most once
= |f sum < —2w1
= Becomes positive
= At most once

u 4 5 _ PosOver

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Characterizing TAdd

Positive Overflow

m Functionality TAdd(u, v)
" True sum requires w+1 bits >0 \
= Drop off MSB Vv
" Treat remaining bits as 2’s <0 \
comp. integer /
/<Ou>0

Negative Overflow

(U+v+ W utv< TMin,, (NegOver)
TAdd,(u,v) = u+v TMin,, <u+v<TMax,,
u+v— 2w TMax,, <u+V (PosOver)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Multiplication

m Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned

m But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
= Resultrange:0<x*y<(2w—-1)2 = 22w—2w+l 4+ 1
= Two’s complement min (negative): Up to 2w-1 bits
= Result range: x * y > (-2w1)*(2w1-1) = —22w=24 w1
= Two’s complement max (positive): Up to 2w bits, but only for (TMin)?
= Resultrange: x * y < (=2w1)2 = 22w=2
m So, maintaining exact results...
= would need to keep expanding word size with each product computed
® js done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Unsigned Multiplication in C

u o 00
Operands: w bits
* o000
\ %
True Product: 2*w bits U * V oo ® o
UMU.lt u.v se e
Discard w bits: w bits Wit 5 V)
m Standard Multiplication Function
" |gnores high order w bits
m Implements Modular Arithmetic
UMult,(u,v)= u -v mod2¥
1110 1001 E9 233
* 1101 0101 * D5 * 213
1100 0001 1101 1101 ClDD 49629

1101 1101 DD 221

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Signed Multiplication in C

u o 00
Operands: w bits
* o000
1%
True Product: 2*w bits U " V oo oo
TMult (u ., v cee
Discard w bits: w bits RCERY
m Standard Multiplication Function
= |gnores high order w bits
= Some of which are different for signed
vs. unsigned multiplication
= Lower bits are the same
1110 1001 E9 -23
* 1101 0101 * D5 * -43
0000 0011 1101 1101 03DD 989
1101 1101 DD -35

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k

= Both signed and unsigned k
u ® 0 o
Operands: w bits
¥ 2k |[O] eee |0]1]0Of eee |O|O
True Product: w+k bits u = 2% cooe 0 eee]0]0
Discard k bits: w bits UMult,(u,2%) [eee 0] eee [0]O
TMult, (u , 2F)
m Examples
"= u << 3 == u * 8
" (u<<K b)) - (u <K 3)== u * 24

" Most machines shift and add faster than multiply

= Compiler generates this code autc
priers Important Lesson:

Trust Your Compiler!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Multiplication

m Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned

m But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
= Resultrange:0<x*y<(2w—-1)2 = 22w—2w+l 4+ 1
= Two’s complement min (negative): Up to 2w-1 bits
= Result range: x * y > (-2w1)*(2w1-1) = —22w=24 w1
= Two’s complement max (positive): Up to 2w bits, but only for (TMin)?
= Resultrange: x * y < (=2w1)2 = 22w=2
m So, maintaining exact results...
= would need to keep expanding word size with each product computed
® js done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Unsigned Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
= g > kgives Lu / 2]
= Uses logical shift

k
u 0oe oeoe Binary Point
Operands:
/ 2k Ol eee |O|1]|0]| eee |0O]|0O
Division: 1/ 2k [0f eee 0]O (cee
Result: | 44/ 2k | [0]_eee JoJ0
Division Computed Hex Binary

X 15213 15213 3B 6D| 00111011 01101101

x > 1 7606.5 7606 1D B6| 00011101 10110110

x >> 4 950.8125 950 03 B6| 00000011 10110110

x >> 8 | 59.4257813 59 00 3B| 00000000 0O111011

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Sighed Power-of-2 Divide with Shift

m Quotient of Signed by Power of 2
= x > kgives Lx / 2]
= Uses arithmetic shift
"= Rounds wrong direction whenx < 0

k
X see see Binary Point
Operands:
l 2k Ol eee |01110] eee |0OI0 /
Division: x / 2k oo eee r(eoe
Result: RoundDown(x / 2¥) eoe eoe
Division Computed Hex Binary
y -15213 -15213 C4 93| 11000100 10010011
y > 1 -7606.5 -7607 E2 49| 11100010 01001001
y >> 4 -950.8125 -951 FC 49| 11111100 01001001
y >> 8 |[-59.4257813 -60 FF C4| 11111111 11000100

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Correct Power-of-2 Divide

m Quotient of Negative Number by Power of 2
= Want| x / 2¢] (Round Toward 0)
= Computeas | (x+2k-1)/ 2k]
= InC: (x + (1<<k)-1) >> k
= Biases dividend toward O

Case 1: No rounding k

Dividend: x [L[T eee T TOJ eee JoJO
_|_2k_1 Ol eee |OI0I1] eee |1]1

1 cee 1] eee [1]1] Binary Point

Divisor: | 2k 10| e 10]1]0] e+ [0]0 /
/

|_x/2k—| 1|1 eee |11]1111 XY 111 eee 111

Biasing has no effect

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: x L] eee
_|_2k_1 Ol eee |O]0O]1] eee |1]1

1 (X X oo
L& J
Y
Incremented by 1 Binary Point
Divisor: | 2k 0] e |O[1]0] e+]0]O /
/
| x/2F | [A e 11T
L& J
Y

Incremented by 1

Biasing adds 1 to final result

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Negation: Complement & Increment

m Negate through complement and increase

~X + == -X
m Example
= QObservation: ~x + x == 1111..111 == -1
x (1]0]0]1]1{1]0]1
+ ~x 10]1]1]0]0]0]1]0
-1 |1{1)1)1}1{1}1]1
X =15213
Decimal [Hex Binary
X 15213| 3B 6D| 00111011 01101101
~X -15214| C4 92| 11000100 10010010

~x+1 | -15213| C4 93(11000100 10010011
y -15213| C4 93| 11000100 10010011

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Complement & Increment Examples

x=0
Decimal Hex Binary

0 0| 00 00 00000000 00000000

~0 -1 FF FF| 11111111 11111111

~0+1 0| 00 O0O| 00000000 0OOOOOOOO
X = TMin

Decimal [Hex Binary

X -32768| 80 00 10000000 00000000

~X 32767| 7F FF| 01111111 11111111

~x+1 -32768| 80 00 10000000 00000000

Canonical counter example

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Representing information as bits
m Bit-level manipulations
m Integers

® Representation: unsigned and signed
® Conversion, casting

" Expanding, truncating previous lecture
® Addition, negation, multiplication, shifting today
= Summary

m Representations in memory, pointers, strings

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Arithmetic: Basic Rules

m Addition:

= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

= Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2%
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2%

m Multiplication:

= Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

= Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2% (result in proper range)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Why Should | Use Unsigned?

m Don’t use without understanding implications
= Easy to make mistakes

unsigned 1i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+l];

= Can be very subtle
#define DELTA sizeof (int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Counting Down with Unsigned

m Proper way to use unsigned as loop index
unsigned 1i;
for (i = cnt-2; i < cnt; i--)
a[i] += a[i+l];
m See Robert Seacord, Secure Coding in C and C++
= (CStandard guarantees that unsigned addition will behave like modular

arithmetic
= 0—1-> UMax

m Even better
size t 1i;
for (1 = cnt-2; i < cnt; i--)
a[i] += a[i+l];
" Datatype size t defined as unsigned value with length = word size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Why Should | Use Unsigned? (cont.)

m Do Use When Performing Modular Arithmetic

= Multiprecision arithmetic

m Do Use When Using Bits to Represent Sets

® Logical right shift, no sign extension

m Do Use In System Programming

" Bit masks, device commands,...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/28101/quizzes/77029

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

https://canvas.cmu.edu/courses/28101/quizzes/77029

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Representing information as bits
m Bit-level manipulations

m Integers
® Representation: unsigned and signed
® Conversion, casting

" Expanding, truncating previous lecture

® Addition, negation, multiplication, shifting today

= Summary

m Representations in memory, pointers, strings

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Byte-Oriented Memory Organization

00 Qﬁ.

m Programs refer to data by address
= Conceptually, envision it as a very large array of bytes
= In reality, it’s not, but can think of it that way
" An address is like an index into that array
= and, a pointer variable stores an address

m Note: system provides private address spaces to each “process”
" Think of a process as a program being executed
= So, a program can clobber its own data, but not that of others

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Machine Words

m Any given computer has a “Word Size”
®" Nominal size of integer-valued data
= and of addresses

= Until recently, most machines used 32 bits (4 bytes) as word size
= Limits addresses to 4GB (232 bytes)

" |ncreasingly, machines have 64-bit word size
= Potentially, could have 18 EB (exabytes) of addressable memory
= That’s 18.4 X 1018

" Machines still support multiple data formats
= Fractions or multiples of word size
= Always integral number of bytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Word-Oriented Memory Organization

32-bit 64-bit Bytes Addr

m Addresses Specify Byte Words Words '

Locations 0000

. . Addr

= Address of first byte in word - 0001

: : 0000 0002

= Addresses of successive words differ Addr 003
by 4 (32-bit) or 8 (64-bit) =

0000 0004

Addr 0005

0004 0006

0007

0008

Addr 0009

0008 Addr 0010

= 0011

0008 0012

Addr 0013

0012 0014

0015

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Byte Ordering

m So, how are the bytes within a multi-byte word ordered in
memory?

m Conventions
= Big Endian: Sun (Oracle SPARC), PPC Mac, Internet
= Least significant byte has highest address
= Little Endian: x86, ARM processors running Android, iOS, and Linux
= Least significant byte has lowest address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Byte Ordering Example

m Example
= Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67

Little Endian 0x100 0x101 0x102 0x103
67 45 23 01

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Decimal: 15213

Representing Integers |sinary: 0011 1011 0110 1101

Hex: 3 B 6 D
int A = 15213; long int C = 15213;
Q IA32, x86-64 Sun
4 |IA32 X86-64 Sun
3 éD |
%D 3B |«
o 00 [
Ev 00 K

int B = -15213;
|IA32, x86-64 Sun

T~

Two’s complement representation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Examining Data Representations

m Code to Print Byte Representation of Data
= Casting pointer to unsigned char * allows treatment as a byte array

typedef unsigned char *pointer;

void show bytes (pointer start, size t 1len) {
size t i;
for (1 = 0; 1 < len; i++)
printf (“%$p\t0x%.2x\n",start+i, start[i]);
printf ("\n") ;

}

Printf directives:
%p: Print pointer
%X: Print Hexadecimal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

show bytes Execution Example

int a = 15213;
printf ("int a = 15213;\n");
show bytes ((pointer) &a, sizeof (int));

Result (Linux x86-64):

int a = 15213;

Ox7fffb7f71dbc od
Ox7fffb7f71dbd 3b
Ox7fffb7f71dbe 00
Ox7fffb7f71dbf 00

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Representing Pointers

int B = -15213;
int *P = &B;
Sun |A32 xX86-64
EF AC 3C
FF 28 1B
FB F5 FE
2C FF 82
FD
TF
00
00

Different compilers & machines assign different locations to objects

Even get different results each time run program

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Representing Strings

char S[eo] = "18213";
m StringsinC
= Represented by array of characters
= Each character encoded in ASCIl format IA32 Sun
= Standard 7-bit encoding of character set 31 | o 31
= Character “0” has code 0x30 38 |« | 38
— Digit /i has code 0x30+/ 32 | o 32
= man ascii for code table 31 |k J 31
= String should be null-terminated 33 | J 33
= Final character=0 00 | J 00

m Compatibility

= Byte ordering not an issue

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Reading Byte-Reversed Listings

m Disassembly
= Text representation of binary machine code
" Generated by program that reads the machine code

m Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx

8048366 81 c3 ab 12 00 00 add $0x12ab, $ebx
804836¢: 83 bb 28 000 00 00 cmpl x0, 0x28 (%$ebx)

m Deciphering Numbers

= Value: O0x12ab
" Pad to 32 bits: 0x000012ab
= Split into bytes: 00 00 12 ab

® Reverse: ab 12 00 00

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Summary

m Representing information as bits
m Bit-level manipulations

m Integers
= Representation: unsigned and signed
= Conversion, casting
= Expanding, truncating
= Addition, negation, multiplication, shifting

m Representations in memory, pointers, strings
= Summary

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Integer C Puzzles

x <0 = ((x*2) < 0)
ux >= 0
X &7 == 17 = (x<<30) < 0
ux > -1
X >y = X < -y
x * x >= 0
Initialization x>06&y>0
x >= 0
x <=0
int y = bar(); (x| -x)>>31 == -1

x+y >0
-x <=0
-x >= 0

int x = foo();

J 44

unsigned ux = x; ux >> 3 == ux/8
x >> 3 == x/8
x & (x-1) '=0

unsigned uy = y;

XX I XX XXXXCNNX

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiq_bnxubbKAhWDHh4KHe0lA-cQjRwIBw&url=https://commons.wikimedia.org/wiki/File:Red_x.svg&bvm=bv.112064104,d.dmo&psig=AFQjCNFfdi-zR8KFDHdPCO6tKFT_z9ko5A&ust=1453312679784653
https://upload.wikimedia.org/wikipedia/commons/archive/0/03/20080524210756!Green_check.svg
https://upload.wikimedia.org/wikipedia/commons/archive/0/03/20080524210756!Green_check.svg
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiq_bnxubbKAhWDHh4KHe0lA-cQjRwIBw&url=https://commons.wikimedia.org/wiki/File:Red_x.svg&bvm=bv.112064104,d.dmo&psig=AFQjCNFfdi-zR8KFDHdPCO6tKFT_z9ko5A&ust=1453312679784653
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiq_bnxubbKAhWDHh4KHe0lA-cQjRwIBw&url=https://commons.wikimedia.org/wiki/File:Red_x.svg&bvm=bv.112064104,d.dmo&psig=AFQjCNFfdi-zR8KFDHdPCO6tKFT_z9ko5A&ust=1453312679784653
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiq_bnxubbKAhWDHh4KHe0lA-cQjRwIBw&url=https://commons.wikimedia.org/wiki/File:Red_x.svg&bvm=bv.112064104,d.dmo&psig=AFQjCNFfdi-zR8KFDHdPCO6tKFT_z9ko5A&ust=1453312679784653
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiq_bnxubbKAhWDHh4KHe0lA-cQjRwIBw&url=https://commons.wikimedia.org/wiki/File:Red_x.svg&bvm=bv.112064104,d.dmo&psig=AFQjCNFfdi-zR8KFDHdPCO6tKFT_z9ko5A&ust=1453312679784653
https://upload.wikimedia.org/wikipedia/commons/archive/0/03/20080524210756!Green_check.svg
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiq_bnxubbKAhWDHh4KHe0lA-cQjRwIBw&url=https://commons.wikimedia.org/wiki/File:Red_x.svg&bvm=bv.112064104,d.dmo&psig=AFQjCNFfdi-zR8KFDHdPCO6tKFT_z9ko5A&ust=1453312679784653
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiq_bnxubbKAhWDHh4KHe0lA-cQjRwIBw&url=https://commons.wikimedia.org/wiki/File:Red_x.svg&bvm=bv.112064104,d.dmo&psig=AFQjCNFfdi-zR8KFDHdPCO6tKFT_z9ko5A&ust=1453312679784653
https://upload.wikimedia.org/wikipedia/commons/archive/0/03/20080524210756!Green_check.svg
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiq_bnxubbKAhWDHh4KHe0lA-cQjRwIBw&url=https://commons.wikimedia.org/wiki/File:Red_x.svg&bvm=bv.112064104,d.dmo&psig=AFQjCNFfdi-zR8KFDHdPCO6tKFT_z9ko5A&ust=1453312679784653
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiq_bnxubbKAhWDHh4KHe0lA-cQjRwIBw&url=https://commons.wikimedia.org/wiki/File:Red_x.svg&bvm=bv.112064104,d.dmo&psig=AFQjCNFfdi-zR8KFDHdPCO6tKFT_z9ko5A&ust=1453312679784653

