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Network Programming – Additional Slides

 The material in this slide deck may be useful when you do proxy lab.

 We encourage you to review it on your own time.
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Tiny Web Server

 Tiny Web server described in text

▪ Tiny is a sequential Web server

▪ Serves static and dynamic content to real browsers

▪ text files, HTML files, GIF, PNG, and JPEG images

▪ 239 lines of commented C code

▪ Not as complete or robust as a real Web server

▪ You can break it with poorly-formed HTTP requests (e.g., terminate lines with 
“\n” instead of “\r\n”)
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Tiny Operation

 Accept connection from client

 Read request from client (via connected socket)

 Split into <method>  <uri> <version>
▪ If method not GET, then return error

 If URI contains “cgi-bin” then serve dynamic content

▪ (Would do wrong thing if had file “abcgi-bingo.html”)

▪ Fork process to execute program

 Otherwise serve static content
▪ Copy file to output
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Tiny Serving Static Content

void serve_static(int fd, char *filename, int filesize)

{

int srcfd;

char *srcp, filetype[MAXLINE], buf[MAXBUF];

/* Send response headers to client */

get_filetype(filename, filetype);       

sprintf(buf, "HTTP/1.0 200 OK\r\n");    

sprintf(buf, "%sServer: Tiny Web Server\r\n", buf);

sprintf(buf, "%sConnection: close\r\n", buf);

sprintf(buf, "%sContent-length: %d\r\n", buf, filesize);

sprintf(buf, "%sContent-type: %s\r\n\r\n", buf, filetype);

Rio_writen(fd, buf, strlen(buf));       

/* Send response body to client */

srcfd = Open(filename, O_RDONLY, 0);    

srcp = Mmap(0, filesize, PROT_READ, MAP_PRIVATE, srcfd, 0);

Close(srcfd);                           

Rio_writen(fd, srcp, filesize);         

Munmap(srcp, filesize);                 

} tiny.c
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Serving Dynamic Content

Client Server

 Client sends request to server

 If request URI contains the 
string “/cgi-bin”, the Tiny 
server assumes that the 
request is for dynamic content 

GET /cgi-bin/env.pl HTTP/1.1
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Serving Dynamic Content (cont)

Client Server
 The server creates a child 

process and runs the 
program identified by the 
URI in that process

env.pl

fork/exec
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Serving Dynamic Content (cont)

Client Server The child runs and generates 
the dynamic content

 The server captures the 
content of the child and 
forwards it without 
modification to the client

env.pl

Content

Content
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Issues in Serving Dynamic Content

 How does the client pass program 
arguments to the server?

 How does the server pass these 
arguments to the child?

 How does the server pass other info 
relevant to the request to the child?

 How does the server capture the 
content produced by the child?

 These issues are addressed by the 
Common Gateway Interface (CGI) 
specification.

Client Server

Content

Content

Request

Create

env.pl
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CGI

 Because the children are written according to the CGI spec, they are often 
called CGI programs.

 However, CGI really defines a simple standard for transferring information 
between the client (browser), the server, and the child process.

 CGI is the original standard for generating dynamic content. Has been largely 
replaced by other, faster techniques: 
▪ E.g., fastCGI, Apache modules, Java servlets, Rails controllers

▪ Avoid having to create process on the fly (expensive and slow). 
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The add.com Experience

Output page

host port CGI program

arguments
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Serving Dynamic Content With GET
 Question: How does the client pass arguments to the server?

 Answer: The arguments are appended to the URI

 Can be encoded directly in a URL typed to a browser or a URL 
in an HTML link  
▪ http://add.com/cgi-bin/adder?15213&18213

▪ adder is the CGI program on the server that will do the addition.

▪ argument list starts with “?”

▪ arguments separated by “&”

▪ spaces represented by  “+” or “%20”
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Serving Dynamic Content With GET

 URL suffix: 
▪ cgi-bin/adder?15213&18213

 Result displayed on browser: 

Welcome to add.com: THE Internet 

addition portal. 

The answer is: 15213 + 18213 = 33426

Thanks for visiting! 
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Serving Dynamic Content With GET

 Question: How does the server pass these arguments to 
the child?

 Answer: In environment variable QUERY_STRING
▪ A single string containing everything after the “?”

▪ For add: QUERY_STRING = “15213&18213”

/* Extract the two arguments */

if ((buf = getenv("QUERY_STRING")) != NULL) {

p = strchr(buf, '&');

*p = '\0';

strcpy(arg1, buf);

strcpy(arg2, p+1);

n1 = atoi(arg1);

n2 = atoi(arg2);

} adder.c
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void serve_dynamic(int fd, char *filename, char *cgiargs)

{

char buf[MAXLINE], *emptylist[] = { NULL };

/* Return first part of HTTP response */

sprintf(buf, "HTTP/1.0 200 OK\r\n");

Rio_writen(fd, buf, strlen(buf));

sprintf(buf, "Server: Tiny Web Server\r\n");

Rio_writen(fd, buf, strlen(buf));

if (Fork() == 0) { /* Child */

/* Real server would set all CGI vars here */

setenv("QUERY_STRING", cgiargs, 1); 

Dup2(fd, STDOUT_FILENO);         /* Redirect stdout to client */

Execve(filename, emptylist, environ); /* Run CGI program */

}

Wait(NULL); /* Parent waits for and reaps child */

}

Serving Dynamic Content with GET

 Question: How does the server capture the content produced by the child?

 Answer: The child generates its output on stdout.  Server uses dup2 to 
redirect stdout to its connected socket. 

tiny.c
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Serving Dynamic Content with GET

/* Make the response body */

sprintf(content, "Welcome to add.com: ");

sprintf(content, "%sTHE Internet addition portal.\r\n<p>", content);

sprintf(content, "%sThe answer is: %d + %d = %d\r\n<p>",

content, n1, n2, n1 + n2);

sprintf(content, "%sThanks for visiting!\r\n", content);

/* Generate the HTTP response */

printf("Content-length: %d\r\n", (int)strlen(content));

printf("Content-type: text/html\r\n\r\n");

printf("%s", content);

fflush(stdout);

exit(0); adder.c

 Notice that only the CGI child process knows the content 
type and length, so it must generate those headers.
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bash:makoshark> telnet whaleshark.ics.cs.cmu.edu 15213

Trying 128.2.210.175...

Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).

Escape character is '^]'.

GET /cgi-bin/adder?15213&18213 HTTP/1.0

HTTP/1.0 200 OK

Server: Tiny Web Server

Connection: close

Content-length: 117

Content-type: text/html

Welcome to add.com: THE Internet addition portal.

<p>The answer is: 15213 + 18213 = 33426

<p>Thanks for visiting!

Connection closed by foreign host.

bash:makoshark> 

Serving Dynamic Content With GET 

HTTP request sent by client

HTTP response generated 

by the server

HTTP response generated 

by the CGI program
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For More Information

 W. Richard Stevens et. al. “Unix Network Programming: 
The Sockets Networking API”, Volume 1, Third Edition, 
Prentice Hall, 2003
▪ THE network programming bible.

 Michael Kerrisk, “The Linux Programming Interface”, No 
Starch Press, 2010
▪ THE Linux programming bible. 

 Complete versions of all code in this lecture is available 
from the 213 schedule page. 
▪ http://www.cs.cmu.edu/~213/schedule.html

▪ csapp.{.c,h}, hostinfo.c, echoclient.c, echoserveri.c, tiny.c, adder.c

▪ You can use any of this code in your assignments. 
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Web History

 1989:

▪ Tim Berners-Lee (CERN) writes internal proposal to develop a distributed hypertext 
system

▪ Connects “a web of notes with links”

▪ Intended to help CERN physicists in large projects share and manage information 

 1990:

▪ Tim BL writes a graphical browser for Next machines
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Web History (cont)

 1992

▪ NCSA server released

▪ 26 WWW servers worldwide

 1993

▪ Marc Andreessen releases first version of NCSA Mosaic browser

▪ Mosaic version released for (Windows, Mac, Unix)

▪ Web (port 80) traffic at 1% of NSFNET backbone traffic

▪ Over 200 WWW servers worldwide

 1994

▪ Andreessen and colleagues leave NCSA to form “Mosaic 
Communications Corp” (predecessor to Netscape)
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HTTP Versions

 Major differences between HTTP/1.1 and HTTP/1.0
▪ HTTP/1.0 uses a new connection for each transaction

▪ HTTP/1.1 also supports persistent connections

▪ multiple transactions over the same connection

▪ Connection: Keep-Alive

▪ HTTP/1.1 requires HOST header

▪ Host: www.cmu.edu

▪ Makes it possible to host multiple websites at single Internet host

▪ HTTP/1.1 supports chunked encoding

▪ Transfer-Encoding: chunked

▪ HTTP/1.1 adds additional support for caching



Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GET Request to Apache Server
From Firefox Browser

GET /~bryant/test.html HTTP/1.1

Host: www.cs.cmu.edu

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; 

rv:1.9.2.11) Gecko/20101012 Firefox/3.6.11

Accept: 

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 115

Connection: keep-alive

CRLF (\r\n)

URI is just the suffix, not the entire URL
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GET Response From Apache Server

HTTP/1.1 200 OK

Date: Fri, 29 Oct 2010 19:48:32 GMT

Server: Apache/2.2.14 (Unix) mod_ssl/2.2.14 OpenSSL/0.9.7m 

mod_pubcookie/3.3.2b PHP/5.3.1

Accept-Ranges: bytes

Content-Length: 479

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

<html>

<head><title>Some Tests</title></head>

<body>

<h1>Some Tests</h1>

. . .

</body>

</html>
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Data Transfer Mechanisms

 Standard
▪ Specify total length with content-length

▪ Requires that program buffer entire message

 Chunked
▪ Break into blocks

▪ Prefix each block with number of bytes (Hex coded)
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Chunked Encoding Example
HTTP/1.1 200 OK\n

Date: Sun, 31 Oct 2010 20:47:48 GMT\n

Server: Apache/1.3.41 (Unix)\n 

Keep-Alive: timeout=15, max=100\n

Connection: Keep-Alive\n

Transfer-Encoding: chunked\n

Content-Type: text/html\n

\r\n

d75\r\n

<html>

<head>

.<link href="http://www.cs.cmu.edu/style/calendar.css" rel="stylesheet" 

type="text/css">

</head>

<body id="calendar_body">

<div id='calendar'><table width='100%'  border='0' cellpadding='0' 

cellspacing='1' id='cal'>

. . .

</body>

</html>

\r\n

0\r\n

\r\n

First Chunk: 0xd75 = 3445 bytes

Second Chunk: 0 bytes (indicates last chunk)
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Proxies

 A proxy is an intermediary between a client and an origin server
▪ To the client, the proxy acts like a server

▪ To the server, the proxy acts like a client

Client Proxy
Origin
Server

1. Client request 2. Proxy request

3. Server response4. Proxy response
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Why Proxies?

 Can perform useful functions as requests and responses pass by
▪ Examples: Caching, logging, anonymization, filtering, transcoding

Client
A

Proxy
cache

Origin
Server

Request foo.html

Request foo.html

foo.html

foo.html

Client
B

Request foo.html

foo.html

Fast inexpensive local network

Slower more 

expensive

global network


