Network Programming – Additional Slides

- The material in this slide deck may be useful when you do proxy lab.
- We encourage you to review it on your own time.

Tiny Web Server

Tiny Web server described in text

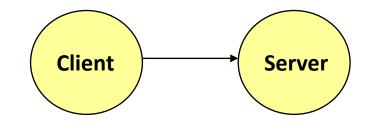
- Tiny is a sequential Web server
- Serves static and dynamic content to real browsers
 - text files, HTML files, GIF, PNG, and JPEG images
- 239 lines of commented C code
- Not as complete or robust as a real Web server
 - You can break it with poorly-formed HTTP requests (e.g., terminate lines with "\n" instead of "\r\n")

Tiny Operation

- Accept connection from client
- Read request from client (via connected socket)
- Split into <method> <uri> <version>
 - If method not GET, then return error
- If URI contains "cgi-bin" then serve dynamic content
 - (Would do wrong thing if had file "abcgi-bingo.html")
 - Fork process to execute program
- Otherwise serve static content
 - Copy file to output

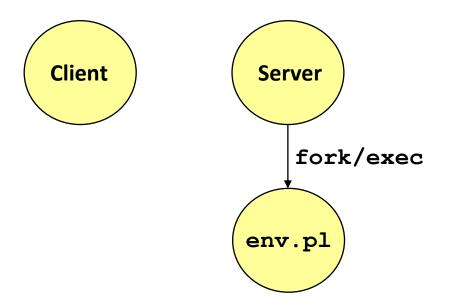
Tiny Serving Static Content

```
void serve static(int fd, char *filename, int filesize)
    int srcfd;
    char *srcp, filetype[MAXLINE], buf[MAXBUF];
    /* Send response headers to client */
    get filetype(filename, filetype);
    sprintf(buf, "HTTP/1.0 200 OK\r\n");
    sprintf(buf, "%sServer: Tiny Web Server\r\n", buf);
    sprintf(buf, "%sConnection: close\r\n", buf);
    sprintf(buf, "%sContent-length: %d\r\n", buf, filesize);
    sprintf(buf, "%sContent-type: %s\r\n\r\n", buf, filetype);
    Rio writen(fd, buf, strlen(buf));
    /* Send response body to client */
    srcfd = Open(filename, O RDONLY, 0);
    srcp = Mmap(0, filesize, PROT READ, MAP PRIVATE, srcfd, 0);
    Close(srcfd);
    Rio writen(fd, srcp, filesize);
    Munmap(srcp, filesize);
                                                              tiny.c
```

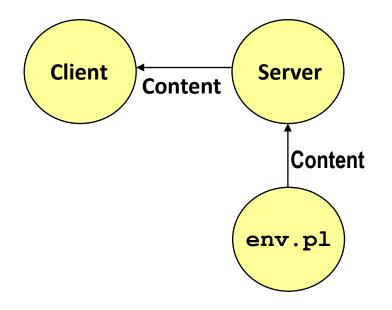

}

{

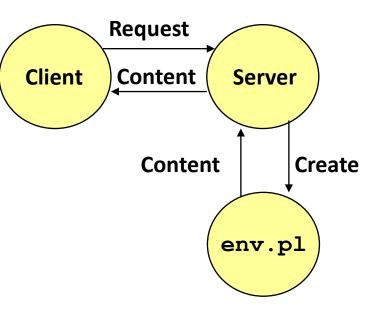
Serving Dynamic Content


- Client sends request to server
- If request URI contains the string "/cgi-bin", the Tiny server assumes that the request is for dynamic content

GET /cgi-bin/env.pl HTTP/1.1


Serving Dynamic Content (cont)

The server creates a child process and runs the program identified by the URI in that process

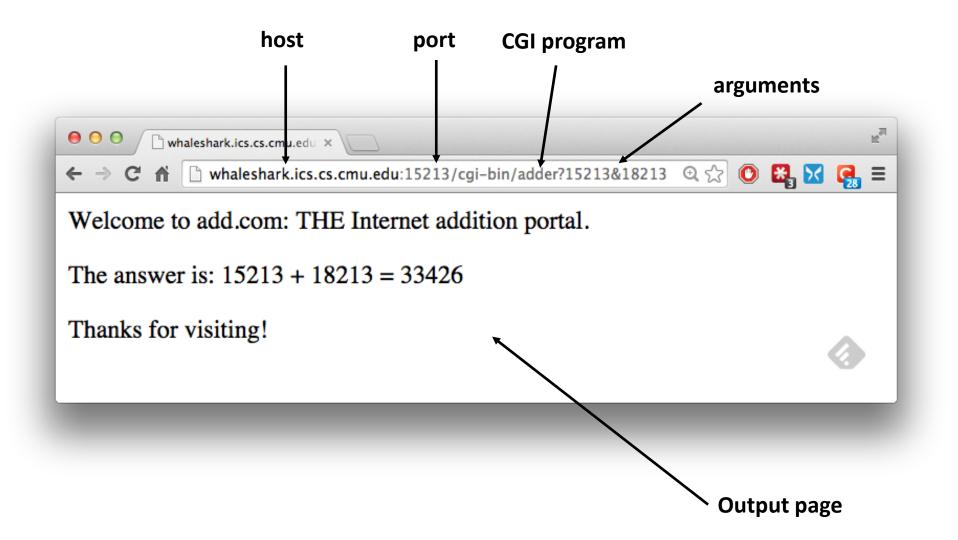

Serving Dynamic Content (cont)

- The child runs and generates the dynamic content
- The server captures the content of the child and forwards it without modification to the client

Issues in Serving Dynamic Content

- How does the client pass program arguments to the server?
- How does the server pass these arguments to the child?
- How does the server pass other info relevant to the request to the child?
- How does the server capture the content produced by the child?
- These issues are addressed by the Common Gateway Interface (CGI) specification.

CGI


Because the children are written according to the CGI spec, they are often called CGI programs.

However, CGI really defines a simple standard for transferring information between the client (browser), the server, and the child process.

 CGI is the original standard for generating dynamic content. Has been largely replaced by other, faster techniques:

- E.g., fastCGI, Apache modules, Java servlets, Rails controllers
- Avoid having to create process on the fly (expensive and slow).

The add.com Experience

- Question: How does the client pass arguments to the server?
- Answer: The arguments are appended to the URI
- Can be encoded directly in a URL typed to a browser or a URL in an HTML link
 - http://add.com/cgi-bin/adder?15213&18213
 - **adder** is the CGI program on the server that will do the addition.
 - argument list starts with "?"
 - arguments separated by "&"
 - spaces represented by "+" or "%20"

URL suffix:

- cgi-bin/adder?15213&18213
- Result displayed on browser:

```
Welcome to add.com: THE Internet
addition portal.
The answer is: 15213 + 18213 = 33426
Thanks for visiting!
```

- Question: How does the server pass these arguments to the child?
- <u>Answer:</u> In environment variable QUERY_STRING
 - A single string containing everything after the "?"
 - For add: QUERY_STRING = "15213&18213"

```
/* Extract the two arguments */
if ((buf = getenv("QUERY_STRING"))) != NULL) {
    p = strchr(buf, '&');
    *p = '\0';
    strcpy(arg1, buf);
    strcpy(arg2, p+1);
    n1 = atoi(arg1);
    n2 = atoi(arg2);
}
adder.c
```

- Question: How does the server capture the content produced by the child?
- Answer: The child generates its output on stdout. Server uses dup2 to redirect stdout to its connected socket.

```
void serve dynamic(int fd, char *filename, char *cgiargs)
{
    char buf[MAXLINE], *emptylist[] = { NULL };
   /* Return first part of HTTP response */
    sprintf(buf, "HTTP/1.0 200 OK\r\n");
   Rio writen(fd, buf, strlen(buf));
    sprintf(buf, "Server: Tiny Web Server\r\n");
   Rio writen(fd, buf, strlen(buf));
    if (Fork() == 0) { /* Child */
        /* Real server would set all CGI vars here */
        setenv("QUERY STRING", cgiargs, 1);
       Dup2(fd, STDOUT FILENO); /* Redirect stdout to client */
       Execve(filename, emptylist, environ); /* Run CGI program */
    Wait(NULL); /* Parent waits for and reaps child */
                                                                   tiny.c
```

Notice that only the CGI child process knows the content type and length, so it must generate those headers.

```
/* Make the response body */
sprintf(content, "Welcome to add.com: ");
sprintf(content, "%sTHE Internet addition portal.\r\n", content);
sprintf(content, "%sThe answer is: %d + %d = %d\r\n",
        content, n1, n2, n1 + n2);
sprintf(content, "%sThanks for visiting!\r\n", content);
/* Generate the HTTP response */
printf("Content-length: %d\r\n", (int)strlen(content));
printf("Content-type: text/html\r\n\r\n");
printf("%s", content);
fflush(stdout);
exit(0);
                                                               adder.c
```

```
bash:makoshark> telnet whaleshark.ics.cs.cmu.edu 15213
Trying 128.2.210.175...
Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).
Escape character is '^]'.
GET /cgi-bin/adder?15213&18213 HTTP/1.0
                                                HTTP request sent by client
                           _____
HTTP/1.0 200 OK
                                                HTTP response generated
Server: Tiny Web Server
                                                by the server
Connection: close
Content-length: 117
Content-type: text/html
                                                HTTP response generated
Welcome to add.com: THE Internet addition portal.
                                                by the CGI program
The answer is: 15213 + 18213 = 33426
Thanks for visiting!
Connection closed by foreign host.
bash:makoshark>
```

For More Information

- W. Richard Stevens et. al. "Unix Network Programming: The Sockets Networking API", Volume 1, Third Edition, Prentice Hall, 2003
 - THE network programming bible.
- Michael Kerrisk, "The Linux Programming Interface", No Starch Press, 2010
 - THE Linux programming bible.
- Complete versions of all code in this lecture is available from the 213 schedule page.
 - http://www.cs.cmu.edu/~213/schedule.html
 - csapp.{.c,h}, hostinfo.c, echoclient.c, echoserveri.c, tiny.c, adder.c
 - You can use any of this code in your assignments.

Web History

1989:

- Tim Berners-Lee (CERN) writes internal proposal to develop a distributed hypertext system
 - Connects "a web of notes with links"
 - Intended to help CERN physicists in large projects share and manage information

1990:

Tim BL writes a graphical browser for Next machines

Web History (cont)

1992

- NCSA server released
- 26 WWW servers worldwide
- **1993**
 - Marc Andreessen releases first version of NCSA Mosaic browser
 - Mosaic version released for (Windows, Mac, Unix)
 - Web (port 80) traffic at 1% of NSFNET backbone traffic
 - Over 200 WWW servers worldwide

1994

 Andreessen and colleagues leave NCSA to form "Mosaic Communications Corp" (predecessor to Netscape)

HTTP Versions

Major differences between HTTP/1.1 and HTTP/1.0

- HTTP/1.0 uses a new connection for each transaction
- HTTP/1.1 also supports persistent connections
 - multiple transactions over the same connection
 - Connection: Keep-Alive
- HTTP/1.1 requires HOST header
 - Host: www.cmu.edu
 - Makes it possible to host multiple websites at single Internet host
- HTTP/1.1 supports chunked encoding
 - Transfer-Encoding: chunked
- HTTP/1.1 adds additional support for caching

GET Request to Apache Server From Firefox Browser

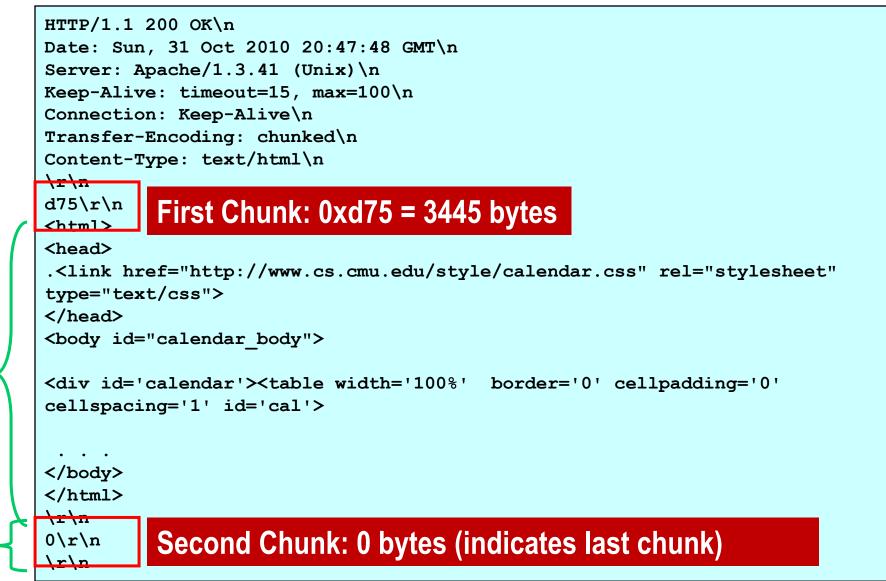
URI is just the suffix, not the entire URL

```
GET /~bryant/test.html HTTP/1.1
Host: www.cs.cmu.edu
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US;
rv:1.9.2.11) Gecko/20101012 Firefox/3.6.11
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 115
Connection: keep-alive
CRLF (\r\n)
```

GET Response From Apache Server

```
HTTP/1.1 200 OK
Date: Fri, 29 Oct 2010 19:48:32 GMT
Server: Apache/2.2.14 (Unix) mod ssl/2.2.14 OpenSSL/0.9.7m
mod pubcookie/3.3.2b PHP/5.3.1
Accept-Ranges: bytes
Content-Length: 479
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html
<html>
<head><title>Some Tests</title></head>
<body>
<h1>Some Tests</h1>
</body>
</html>
```

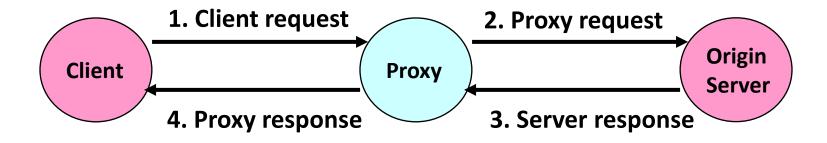
Data Transfer Mechanisms


Standard

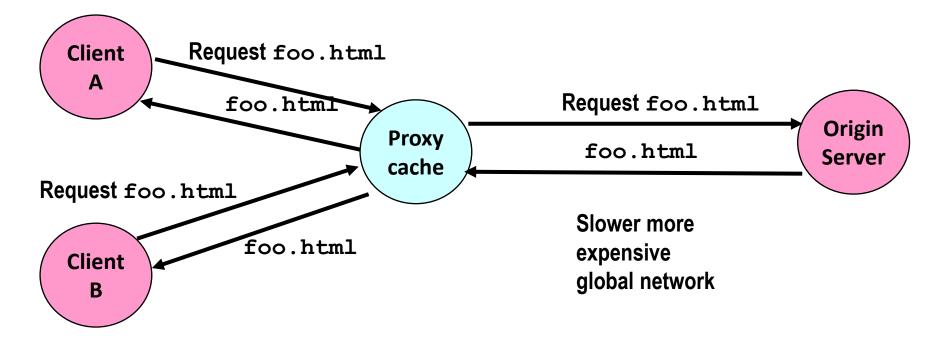
- Specify total length with content-length
- Requires that program buffer entire message

Chunked

- Break into blocks
- Prefix each block with number of bytes (Hex coded)


Chunked Encoding Example

Proxies


• A *proxy* is an intermediary between a client and an *origin server*

- To the client, the proxy acts like a server
- To the server, the proxy acts like a client

Why Proxies?

- Can perform useful functions as requests and responses pass by
 - Examples: Caching, logging, anonymization, filtering, transcoding

Fast inexpensive local network