
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Network Programming – Additional Slides

 The material in this slide deck may be useful when you do proxy lab.

 We encourage you to review it on your own time.

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Web Server

 Tiny Web server described in text

▪ Tiny is a sequential Web server

▪ Serves static and dynamic content to real browsers

▪ text files, HTML files, GIF, PNG, and JPEG images

▪ 239 lines of commented C code

▪ Not as complete or robust as a real Web server

▪ You can break it with poorly-formed HTTP requests (e.g., terminate lines with
“\n” instead of “\r\n”)

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Operation

 Accept connection from client

 Read request from client (via connected socket)

 Split into <method> <uri> <version>
▪ If method not GET, then return error

 If URI contains “cgi-bin” then serve dynamic content

▪ (Would do wrong thing if had file “abcgi-bingo.html”)

▪ Fork process to execute program

 Otherwise serve static content
▪ Copy file to output

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Serving Static Content

void serve_static(int fd, char *filename, int filesize)

{

int srcfd;

char *srcp, filetype[MAXLINE], buf[MAXBUF];

/* Send response headers to client */

get_filetype(filename, filetype);

sprintf(buf, "HTTP/1.0 200 OK\r\n");

sprintf(buf, "%sServer: Tiny Web Server\r\n", buf);

sprintf(buf, "%sConnection: close\r\n", buf);

sprintf(buf, "%sContent-length: %d\r\n", buf, filesize);

sprintf(buf, "%sContent-type: %s\r\n\r\n", buf, filetype);

Rio_writen(fd, buf, strlen(buf));

/* Send response body to client */

srcfd = Open(filename, O_RDONLY, 0);

srcp = Mmap(0, filesize, PROT_READ, MAP_PRIVATE, srcfd, 0);

Close(srcfd);

Rio_writen(fd, srcp, filesize);

Munmap(srcp, filesize);

} tiny.c

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content

Client Server

 Client sends request to server

 If request URI contains the
string “/cgi-bin”, the Tiny
server assumes that the
request is for dynamic content

GET /cgi-bin/env.pl HTTP/1.1

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content (cont)

Client Server
 The server creates a child

process and runs the
program identified by the
URI in that process

env.pl

fork/exec

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content (cont)

Client Server The child runs and generates
the dynamic content

 The server captures the
content of the child and
forwards it without
modification to the client

env.pl

Content

Content

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Issues in Serving Dynamic Content

 How does the client pass program
arguments to the server?

 How does the server pass these
arguments to the child?

 How does the server pass other info
relevant to the request to the child?

 How does the server capture the
content produced by the child?

 These issues are addressed by the
Common Gateway Interface (CGI)
specification.

Client Server

Content

Content

Request

Create

env.pl

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CGI

 Because the children are written according to the CGI spec, they are often
called CGI programs.

 However, CGI really defines a simple standard for transferring information
between the client (browser), the server, and the child process.

 CGI is the original standard for generating dynamic content. Has been largely
replaced by other, faster techniques:
▪ E.g., fastCGI, Apache modules, Java servlets, Rails controllers

▪ Avoid having to create process on the fly (expensive and slow).

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The add.com Experience

Output page

host port CGI program

arguments

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content With GET
 Question: How does the client pass arguments to the server?

 Answer: The arguments are appended to the URI

 Can be encoded directly in a URL typed to a browser or a URL
in an HTML link
▪ http://add.com/cgi-bin/adder?15213&18213

▪ adder is the CGI program on the server that will do the addition.

▪ argument list starts with “?”

▪ arguments separated by “&”

▪ spaces represented by “+” or “%20”

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content With GET

 URL suffix:
▪ cgi-bin/adder?15213&18213

 Result displayed on browser:

Welcome to add.com: THE Internet

addition portal.

The answer is: 15213 + 18213 = 33426

Thanks for visiting!

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content With GET

 Question: How does the server pass these arguments to
the child?

 Answer: In environment variable QUERY_STRING
▪ A single string containing everything after the “?”

▪ For add: QUERY_STRING = “15213&18213”

/* Extract the two arguments */

if ((buf = getenv("QUERY_STRING")) != NULL) {

p = strchr(buf, '&');

*p = '\0';

strcpy(arg1, buf);

strcpy(arg2, p+1);

n1 = atoi(arg1);

n2 = atoi(arg2);

} adder.c

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

void serve_dynamic(int fd, char *filename, char *cgiargs)

{

char buf[MAXLINE], *emptylist[] = { NULL };

/* Return first part of HTTP response */

sprintf(buf, "HTTP/1.0 200 OK\r\n");

Rio_writen(fd, buf, strlen(buf));

sprintf(buf, "Server: Tiny Web Server\r\n");

Rio_writen(fd, buf, strlen(buf));

if (Fork() == 0) { /* Child */

/* Real server would set all CGI vars here */

setenv("QUERY_STRING", cgiargs, 1);

Dup2(fd, STDOUT_FILENO); /* Redirect stdout to client */

Execve(filename, emptylist, environ); /* Run CGI program */

}

Wait(NULL); /* Parent waits for and reaps child */

}

Serving Dynamic Content with GET

 Question: How does the server capture the content produced by the child?

 Answer: The child generates its output on stdout. Server uses dup2 to
redirect stdout to its connected socket.

tiny.c

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content with GET

/* Make the response body */

sprintf(content, "Welcome to add.com: ");

sprintf(content, "%sTHE Internet addition portal.\r\n<p>", content);

sprintf(content, "%sThe answer is: %d + %d = %d\r\n<p>",

content, n1, n2, n1 + n2);

sprintf(content, "%sThanks for visiting!\r\n", content);

/* Generate the HTTP response */

printf("Content-length: %d\r\n", (int)strlen(content));

printf("Content-type: text/html\r\n\r\n");

printf("%s", content);

fflush(stdout);

exit(0); adder.c

 Notice that only the CGI child process knows the content
type and length, so it must generate those headers.

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

bash:makoshark> telnet whaleshark.ics.cs.cmu.edu 15213

Trying 128.2.210.175...

Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).

Escape character is '^]'.

GET /cgi-bin/adder?15213&18213 HTTP/1.0

HTTP/1.0 200 OK

Server: Tiny Web Server

Connection: close

Content-length: 117

Content-type: text/html

Welcome to add.com: THE Internet addition portal.

<p>The answer is: 15213 + 18213 = 33426

<p>Thanks for visiting!

Connection closed by foreign host.

bash:makoshark>

Serving Dynamic Content With GET

HTTP request sent by client

HTTP response generated

by the server

HTTP response generated

by the CGI program

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

For More Information

 W. Richard Stevens et. al. “Unix Network Programming:
The Sockets Networking API”, Volume 1, Third Edition,
Prentice Hall, 2003
▪ THE network programming bible.

 Michael Kerrisk, “The Linux Programming Interface”, No
Starch Press, 2010
▪ THE Linux programming bible.

 Complete versions of all code in this lecture is available
from the 213 schedule page.
▪ http://www.cs.cmu.edu/~213/schedule.html

▪ csapp.{.c,h}, hostinfo.c, echoclient.c, echoserveri.c, tiny.c, adder.c

▪ You can use any of this code in your assignments.

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Web History

 1989:

▪ Tim Berners-Lee (CERN) writes internal proposal to develop a distributed hypertext
system

▪ Connects “a web of notes with links”

▪ Intended to help CERN physicists in large projects share and manage information

 1990:

▪ Tim BL writes a graphical browser for Next machines

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Web History (cont)

 1992

▪ NCSA server released

▪ 26 WWW servers worldwide

 1993

▪ Marc Andreessen releases first version of NCSA Mosaic browser

▪ Mosaic version released for (Windows, Mac, Unix)

▪ Web (port 80) traffic at 1% of NSFNET backbone traffic

▪ Over 200 WWW servers worldwide

 1994

▪ Andreessen and colleagues leave NCSA to form “Mosaic
Communications Corp” (predecessor to Netscape)

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

HTTP Versions

 Major differences between HTTP/1.1 and HTTP/1.0
▪ HTTP/1.0 uses a new connection for each transaction

▪ HTTP/1.1 also supports persistent connections

▪ multiple transactions over the same connection

▪ Connection: Keep-Alive

▪ HTTP/1.1 requires HOST header

▪ Host: www.cmu.edu

▪ Makes it possible to host multiple websites at single Internet host

▪ HTTP/1.1 supports chunked encoding

▪ Transfer-Encoding: chunked

▪ HTTP/1.1 adds additional support for caching

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GET Request to Apache Server
From Firefox Browser

GET /~bryant/test.html HTTP/1.1

Host: www.cs.cmu.edu

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US;

rv:1.9.2.11) Gecko/20101012 Firefox/3.6.11

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 115

Connection: keep-alive

CRLF (\r\n)

URI is just the suffix, not the entire URL

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GET Response From Apache Server

HTTP/1.1 200 OK

Date: Fri, 29 Oct 2010 19:48:32 GMT

Server: Apache/2.2.14 (Unix) mod_ssl/2.2.14 OpenSSL/0.9.7m

mod_pubcookie/3.3.2b PHP/5.3.1

Accept-Ranges: bytes

Content-Length: 479

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

<html>

<head><title>Some Tests</title></head>

<body>

<h1>Some Tests</h1>

. . .

</body>

</html>

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Data Transfer Mechanisms

 Standard
▪ Specify total length with content-length

▪ Requires that program buffer entire message

 Chunked
▪ Break into blocks

▪ Prefix each block with number of bytes (Hex coded)

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Chunked Encoding Example
HTTP/1.1 200 OK\n

Date: Sun, 31 Oct 2010 20:47:48 GMT\n

Server: Apache/1.3.41 (Unix)\n

Keep-Alive: timeout=15, max=100\n

Connection: Keep-Alive\n

Transfer-Encoding: chunked\n

Content-Type: text/html\n

\r\n

d75\r\n

<html>

<head>

.<link href="http://www.cs.cmu.edu/style/calendar.css" rel="stylesheet"

type="text/css">

</head>

<body id="calendar_body">

<div id='calendar'><table width='100%' border='0' cellpadding='0'

cellspacing='1' id='cal'>

. . .

</body>

</html>

\r\n

0\r\n

\r\n

First Chunk: 0xd75 = 3445 bytes

Second Chunk: 0 bytes (indicates last chunk)

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proxies

 A proxy is an intermediary between a client and an origin server
▪ To the client, the proxy acts like a server

▪ To the server, the proxy acts like a client

Client Proxy
Origin
Server

1. Client request 2. Proxy request

3. Server response4. Proxy response

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Proxies?

 Can perform useful functions as requests and responses pass by
▪ Examples: Caching, logging, anonymization, filtering, transcoding

Client
A

Proxy
cache

Origin
Server

Request foo.html

Request foo.html

foo.html

foo.html

Client
B

Request foo.html

foo.html

Fast inexpensive local network

Slower more

expensive

global network

