
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Network Programming – Additional Slides

 The material in this slide deck may be useful when you do proxy lab.

 We encourage you to review it on your own time.

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Web Server

 Tiny Web server described in text

▪ Tiny is a sequential Web server

▪ Serves static and dynamic content to real browsers

▪ text files, HTML files, GIF, PNG, and JPEG images

▪ 239 lines of commented C code

▪ Not as complete or robust as a real Web server

▪ You can break it with poorly-formed HTTP requests (e.g., terminate lines with
“\n” instead of “\r\n”)

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Operation

 Accept connection from client

 Read request from client (via connected socket)

 Split into <method> <uri> <version>
▪ If method not GET, then return error

 If URI contains “cgi-bin” then serve dynamic content

▪ (Would do wrong thing if had file “abcgi-bingo.html”)

▪ Fork process to execute program

 Otherwise serve static content
▪ Copy file to output

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Serving Static Content

void serve_static(int fd, char *filename, int filesize)

{

int srcfd;

char *srcp, filetype[MAXLINE], buf[MAXBUF];

/* Send response headers to client */

get_filetype(filename, filetype);

sprintf(buf, "HTTP/1.0 200 OK\r\n");

sprintf(buf, "%sServer: Tiny Web Server\r\n", buf);

sprintf(buf, "%sConnection: close\r\n", buf);

sprintf(buf, "%sContent-length: %d\r\n", buf, filesize);

sprintf(buf, "%sContent-type: %s\r\n\r\n", buf, filetype);

Rio_writen(fd, buf, strlen(buf));

/* Send response body to client */

srcfd = Open(filename, O_RDONLY, 0);

srcp = Mmap(0, filesize, PROT_READ, MAP_PRIVATE, srcfd, 0);

Close(srcfd);

Rio_writen(fd, srcp, filesize);

Munmap(srcp, filesize);

} tiny.c

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content

Client Server

 Client sends request to server

 If request URI contains the
string “/cgi-bin”, the Tiny
server assumes that the
request is for dynamic content

GET /cgi-bin/env.pl HTTP/1.1

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content (cont)

Client Server
 The server creates a child

process and runs the
program identified by the
URI in that process

env.pl

fork/exec

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content (cont)

Client Server The child runs and generates
the dynamic content

 The server captures the
content of the child and
forwards it without
modification to the client

env.pl

Content

Content

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Issues in Serving Dynamic Content

 How does the client pass program
arguments to the server?

 How does the server pass these
arguments to the child?

 How does the server pass other info
relevant to the request to the child?

 How does the server capture the
content produced by the child?

 These issues are addressed by the
Common Gateway Interface (CGI)
specification.

Client Server

Content

Content

Request

Create

env.pl

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CGI

 Because the children are written according to the CGI spec, they are often
called CGI programs.

 However, CGI really defines a simple standard for transferring information
between the client (browser), the server, and the child process.

 CGI is the original standard for generating dynamic content. Has been largely
replaced by other, faster techniques:
▪ E.g., fastCGI, Apache modules, Java servlets, Rails controllers

▪ Avoid having to create process on the fly (expensive and slow).

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The add.com Experience

Output page

host port CGI program

arguments

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content With GET
 Question: How does the client pass arguments to the server?

 Answer: The arguments are appended to the URI

 Can be encoded directly in a URL typed to a browser or a URL
in an HTML link
▪ http://add.com/cgi-bin/adder?15213&18213

▪ adder is the CGI program on the server that will do the addition.

▪ argument list starts with “?”

▪ arguments separated by “&”

▪ spaces represented by “+” or “%20”

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content With GET

 URL suffix:
▪ cgi-bin/adder?15213&18213

 Result displayed on browser:

Welcome to add.com: THE Internet

addition portal.

The answer is: 15213 + 18213 = 33426

Thanks for visiting!

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content With GET

 Question: How does the server pass these arguments to
the child?

 Answer: In environment variable QUERY_STRING
▪ A single string containing everything after the “?”

▪ For add: QUERY_STRING = “15213&18213”

/* Extract the two arguments */

if ((buf = getenv("QUERY_STRING")) != NULL) {

p = strchr(buf, '&');

*p = '\0';

strcpy(arg1, buf);

strcpy(arg2, p+1);

n1 = atoi(arg1);

n2 = atoi(arg2);

} adder.c

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

void serve_dynamic(int fd, char *filename, char *cgiargs)

{

char buf[MAXLINE], *emptylist[] = { NULL };

/* Return first part of HTTP response */

sprintf(buf, "HTTP/1.0 200 OK\r\n");

Rio_writen(fd, buf, strlen(buf));

sprintf(buf, "Server: Tiny Web Server\r\n");

Rio_writen(fd, buf, strlen(buf));

if (Fork() == 0) { /* Child */

/* Real server would set all CGI vars here */

setenv("QUERY_STRING", cgiargs, 1);

Dup2(fd, STDOUT_FILENO); /* Redirect stdout to client */

Execve(filename, emptylist, environ); /* Run CGI program */

}

Wait(NULL); /* Parent waits for and reaps child */

}

Serving Dynamic Content with GET

 Question: How does the server capture the content produced by the child?

 Answer: The child generates its output on stdout. Server uses dup2 to
redirect stdout to its connected socket.

tiny.c

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content with GET

/* Make the response body */

sprintf(content, "Welcome to add.com: ");

sprintf(content, "%sTHE Internet addition portal.\r\n<p>", content);

sprintf(content, "%sThe answer is: %d + %d = %d\r\n<p>",

content, n1, n2, n1 + n2);

sprintf(content, "%sThanks for visiting!\r\n", content);

/* Generate the HTTP response */

printf("Content-length: %d\r\n", (int)strlen(content));

printf("Content-type: text/html\r\n\r\n");

printf("%s", content);

fflush(stdout);

exit(0); adder.c

 Notice that only the CGI child process knows the content
type and length, so it must generate those headers.

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

bash:makoshark> telnet whaleshark.ics.cs.cmu.edu 15213

Trying 128.2.210.175...

Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).

Escape character is '^]'.

GET /cgi-bin/adder?15213&18213 HTTP/1.0

HTTP/1.0 200 OK

Server: Tiny Web Server

Connection: close

Content-length: 117

Content-type: text/html

Welcome to add.com: THE Internet addition portal.

<p>The answer is: 15213 + 18213 = 33426

<p>Thanks for visiting!

Connection closed by foreign host.

bash:makoshark>

Serving Dynamic Content With GET

HTTP request sent by client

HTTP response generated

by the server

HTTP response generated

by the CGI program

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

For More Information

 W. Richard Stevens et. al. “Unix Network Programming:
The Sockets Networking API”, Volume 1, Third Edition,
Prentice Hall, 2003
▪ THE network programming bible.

 Michael Kerrisk, “The Linux Programming Interface”, No
Starch Press, 2010
▪ THE Linux programming bible.

 Complete versions of all code in this lecture is available
from the 213 schedule page.
▪ http://www.cs.cmu.edu/~213/schedule.html

▪ csapp.{.c,h}, hostinfo.c, echoclient.c, echoserveri.c, tiny.c, adder.c

▪ You can use any of this code in your assignments.

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Web History

 1989:

▪ Tim Berners-Lee (CERN) writes internal proposal to develop a distributed hypertext
system

▪ Connects “a web of notes with links”

▪ Intended to help CERN physicists in large projects share and manage information

 1990:

▪ Tim BL writes a graphical browser for Next machines

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Web History (cont)

 1992

▪ NCSA server released

▪ 26 WWW servers worldwide

 1993

▪ Marc Andreessen releases first version of NCSA Mosaic browser

▪ Mosaic version released for (Windows, Mac, Unix)

▪ Web (port 80) traffic at 1% of NSFNET backbone traffic

▪ Over 200 WWW servers worldwide

 1994

▪ Andreessen and colleagues leave NCSA to form “Mosaic
Communications Corp” (predecessor to Netscape)

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

HTTP Versions

 Major differences between HTTP/1.1 and HTTP/1.0
▪ HTTP/1.0 uses a new connection for each transaction

▪ HTTP/1.1 also supports persistent connections

▪ multiple transactions over the same connection

▪ Connection: Keep-Alive

▪ HTTP/1.1 requires HOST header

▪ Host: www.cmu.edu

▪ Makes it possible to host multiple websites at single Internet host

▪ HTTP/1.1 supports chunked encoding

▪ Transfer-Encoding: chunked

▪ HTTP/1.1 adds additional support for caching

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GET Request to Apache Server
From Firefox Browser

GET /~bryant/test.html HTTP/1.1

Host: www.cs.cmu.edu

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US;

rv:1.9.2.11) Gecko/20101012 Firefox/3.6.11

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 115

Connection: keep-alive

CRLF (\r\n)

URI is just the suffix, not the entire URL

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GET Response From Apache Server

HTTP/1.1 200 OK

Date: Fri, 29 Oct 2010 19:48:32 GMT

Server: Apache/2.2.14 (Unix) mod_ssl/2.2.14 OpenSSL/0.9.7m

mod_pubcookie/3.3.2b PHP/5.3.1

Accept-Ranges: bytes

Content-Length: 479

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

<html>

<head><title>Some Tests</title></head>

<body>

<h1>Some Tests</h1>

. . .

</body>

</html>

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Data Transfer Mechanisms

 Standard
▪ Specify total length with content-length

▪ Requires that program buffer entire message

 Chunked
▪ Break into blocks

▪ Prefix each block with number of bytes (Hex coded)

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Chunked Encoding Example
HTTP/1.1 200 OK\n

Date: Sun, 31 Oct 2010 20:47:48 GMT\n

Server: Apache/1.3.41 (Unix)\n

Keep-Alive: timeout=15, max=100\n

Connection: Keep-Alive\n

Transfer-Encoding: chunked\n

Content-Type: text/html\n

\r\n

d75\r\n

<html>

<head>

.<link href="http://www.cs.cmu.edu/style/calendar.css" rel="stylesheet"

type="text/css">

</head>

<body id="calendar_body">

<div id='calendar'><table width='100%' border='0' cellpadding='0'

cellspacing='1' id='cal'>

. . .

</body>

</html>

\r\n

0\r\n

\r\n

First Chunk: 0xd75 = 3445 bytes

Second Chunk: 0 bytes (indicates last chunk)

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proxies

 A proxy is an intermediary between a client and an origin server
▪ To the client, the proxy acts like a server

▪ To the server, the proxy acts like a client

Client Proxy
Origin
Server

1. Client request 2. Proxy request

3. Server response4. Proxy response

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Proxies?

 Can perform useful functions as requests and responses pass by
▪ Examples: Caching, logging, anonymization, filtering, transcoding

Client
A

Proxy
cache

Origin
Server

Request foo.html

Request foo.html

foo.html

foo.html

Client
B

Request foo.html

foo.html

Fast inexpensive local network

Slower more

expensive

global network

