1 We Interrupt This Program (10 pts.)
1.1 5pts

Add disableinterrupts before line 29 and enabtderrupts after line 29. Count is
the only variable that is modified by both sets of code, therefore we need to prevent
readchar’s decrement from being interrupted by the keyboard handler.

1 #define BUFSIZE 128

2

3 static int buf[BUFSIZE];

4 static int *head = buf, *ail = buf;

5 static int count = 0;

6

7 void keyboard_handler() {

8 int sc;

9

10 sc = inb(KEYBOARD_PORT);

11

12 if (count < BUFSIZE) {

13 *ail = sc;

14 count++;

15 tail++;

16 if (tail == buf + BUFSIZE) tail = buf;
17 }

18

19 outb(INT_CTL_REG, INT_CTL_DONE);
20 }

21

22 char readchar() {

23 int sc;

24

25 if (count > 0) {

26 sc = *head;

27 head++;

28 if (head == buf + BUFSIZE) head = buf;
29 count--;

30 }

31 else return -1;

32

33 return (char) process_scancode(sc);
34}

1.2 5pts

Remove lines 9 and 24, as the keyboard handler cannot be interrupted except by another
interrupt (like timer). Unless the timer handler calls readchar, the following code is

interrupt safe without disabling interrupts.

O NO Ol b WwN -

NRONRNNNNNNRERRRRRERERPRE R B O
NOoO PR WONRPOOWOMNOOUDA WNEREO

28
29
30
31
32
33
34
35
36
37
38

#define BUFSIZE 128

static int buf[BUFSIZE];
static int ins = 0, rem = 0;

void keyboard_handler() {
int sc, inp;

disable_interrupts();
sc = inb(KEYBOARD_PORT);

inp = ins;
ins++;

if (ins == BUFSIZE) {
if (rem 1= 0) ins = 0;
else ins = BUFSIZE - 1;
}

if (ins == rem) ins = rem - 1;
else buflinp] = sc;

enable_interrupts();

outb(INT_CTL_REG, INT_CTL_DONE);
char readchar() {

int sc;

if (ins == rem) return -1;

sc = buffrem];

rem++;

if (rem == BUFSIZE) rem = 0;

return (char) process_scancode(sc);

}

2 Building a Question (10 pts.)

#define HARDHAT 0
#define HAMMER 1
#define BOTH 2

mutex_t flag;
cond_t cv[3];
int waiting[3];
int resource[2];

/*

* This function will be called before any worker arrives.

* The parameters represent how much equipment the foreman
* has at the start of the day.

*
void init(int hard_hats, int hammers) {
int i;
resource[HARDHAT] = hard_hats;
resource[HAMMER] = hammers;
mutext_init(&flag);
for (i =0; i< 3;i++) {
waiting[i] = 0;
cond_init(cv + i);
}
}
/*

* Workers will call this function when they arrive.
* The parameters are set to 0 if the worker has this and
* 1 if the worker needs this
* This should return when the worker has all the equipment
* he needs.
*
void arrive(int hh, int hammer) {
[* if resources availible then grant them */
mutex_lock(flag);
if ((resourcelHARDHAT] - hh >= 0) &&
(resource[HAMMER] - hammer >= 0) {
resource[HARDHAT] -= hh;
resource[HAMMER] -= hammer;
mutex_unlock(flag);
return;

[* else indicate waiting on correct set
of resources and sleep */

if (hh > 0) {
if (hammer > 0) {
waiting[BOTH]++;
cond_wait(cv[BOTH], flag);
}
else {
waiting[HARDHAT]++;
cond_wait(cv[HARDHAT], flag);
}
}
else {
waiting[HAMMER]++;
cond_wait(cv[HAMMER], flag);
}
mutex_unlock(flag);
}
/*

* Workers will call this function when they depart.
* The parameters are what the worker is leaving with
* the foreman.
*
void depart(int hh, int hammer) {
[* increment resources, then check “queues */
mutex_lock(flag);

resource[HARDHAT]+= hh;
resource[HAMMER] += hammer;

¥ by checking for the resources and removing them now,
* the signaled process can just wake up and leave
* rather than looping to confirm that there are availible
* resources.
*
if (resource[HARDHAT]) {

if (resource[HAMMER] && waiting[BOTH]) {

resource[HARDHAT]--;
resource[HAMMER]--;
cond_signal(cv[BOTHY);
}
else (waiting[HARDHAT]) {

resource[HARDHAT]--;
cond_signal(cv[HARDHAT]);

}

if (resource[HAMMER] && waiting(HAMMER]) {
resource[HAMMER]--;
cond_signal(cv[HAMMERY]);

}

mutex_unlock(flag);

3 Are we dead yet? (10 pts.)
3.1 3pts

If, after the execution trace shown above, the next event that happens is process A:
request(S), will the system be safe, unsafe or deadlocked? Why?

Unsafe, if the following op is process B: request(T) then the execution is safe (see
3.2 for explanation) and if its process C: request(T) then the execution will deadlock
(see 3.3).

3.2 3pts

Assume that, instead of process A: request(S), the third event is process B: request(T),
will this system be safe, unsafe or deadlocked? Why?

Safe, B can finish execution releasing its resources. As A already has the resource
in contention between it and C, it will then acquire its other resource, complete exectu-
tion and exit. Leaving C to acquire resources and complete.

Process A Process B Process C Process A Process B Process C
Resource R Resource S Resource T Resource R Resource S Resource T
(a) After process B: request(T) (b) After process B: release(S)
Figure 1: 3.2 Resource Diagrams
3.3 3pts

Finally assume that, instead of process B: request(T), the third event is process C:
request(T), will this system be safe, unsafe, or deadlocked? Why?

Deadlocked, eventually A, B, and C will make their second requests all of which
are for resources which have already been granted thereby creating circular wait, ie
deadlock.

Process A ‘

Process B ‘

Process C ‘

Resource R Resource S Resource T

Figure 2: Following process C: request(T), the eventual state

4 Paging Algorithms (10 pts.)

4.1 2pts

Process the list of memory addresses to produce a list of page numbers.

le 08 Oe Ob Of 1e 08 Ob 1b 1e Ob Oe 1e 1b Of

4.2 5pts

Fill in the following table of main memory contents for the three different algorithms
using the list from part 1. List the number of the virtual page or a * for unused. Mark
an X when the reference causes a page fault.

FIFO LRU Optimal
Frames PF Frames PF Frames PF
1| 1e]| * * * X |1le| * * * I X | le| * * * | X
2 |1le| 08| * * X |1le| 08| * * I X | 1le| 08| * * | X
3 |1e| 08| 0e| * X |1e| 08| 0e| * | X |1e| 08| 0e| * | X
4 | 1e| 08| 0e|0Ob| X |1e| 08| 0e|0Ob| X |1e| 08| 0e|0Ob| X
5 |0f|08|0e|{0b| X |Of|08|0e|0b| X |1e| 08| O0f |Ob| X
6 |Of | 1e| 0e|Ob| X [Of | 1e| Oe|Ob| X | 1e| 08| Of | Ob
7 |0f |1e| 08| 0Ob| X | Of | 1e| 08| 0Ob| X | 1e| 08| Of | Ob
8 | Of | 1e| 08 | Ob Of | 1e| 08| Ob le| 08| Of | Ob
9 |0f |1e| 08| 1b| X |1b| 1le| 08| 0Ob| X | 1e| 1b| Of | Ob| X
10| Of | 1e | 08| 1b l1b| 1e | 08 | Ob le| 1b | Of | Ob
11| Ob| 1e|{ 08| 1b| X | 1b| 1e| 08| Ob le| 1b | Of | Ob
12| Ob | 0e|08|1b| X | 1b| 1e|Oe|Ob| X | 1e| 1b| Of | Oe| X
13| 0b| Oe|1le|1b| X | 1b| 1le| Oe | Ob le| 1b | Of | Oe
14 | Ob | Oe | 1le| 1b l1b| 1e| Oe | Ob le| 1b | Of | Oe
15/ 0b|Oe|le|Of | X | 1b| 1e| Oe| Of | X | 1e| 1b | Of | Oe
4.3 3pts

LRU is a difficult algorithm to implement in practice, but there are ways to approximate

its behavior. (see section 10.4.5 of the book for one way) Assume the hardware only
has a valid and a dirty bit, how could you modify this algorithm to implement LRU?
Why is this not done in practice?

Create a table to store the counters of when the page was last accessed, this also

serves to confirm that a page is valid. Now mark all pages as invalid. The following is

a modification to a generic page fault handler to implement LRU.

OnPageFault(addr)
[* if the page is actually valid but marked

otherwise so we can update counters to

get LRU */

if PageShouldBeValid(addr)

[* update the counter for that page */
UpdateCounter(addr)
/¥ mark invalid the page we were accessing. */
MarkInvalid(LastAccessed)
LastAccessed = addr
[* make the page we are currently accessing
valid so we don't immediately fault */

MarkValid(LastAccessed)

else
f* Do Normal Page Fault Behaviour */

return

This isn’t done in practice, because it would cause a page fault on each new page
access, which is far too many page faults to be practical.

