
1

Hardware Overview

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� Today's class
� Not exactly Chapter 2 or 13

� Friday's class
� Project 1 talk (probably relevant to you)

� Being registered is good
� Disk space, access control lists, etc.

3

Outline

� Computer parts
� CPU State
� Fairy tales about system calls
� CPU context switch (intro)
� Interrupt handlers
� Interrupt masking

4

Inside The Box - Historical/Logical

CPU

Memory

Graphics

Ethernet

IDE

Floppy

USB

5

Inside The Box - Really

CPU

Memory AGP Graphics

IDE
Floppy
USB

North Bridge

South Bridge

P
C
I

Ethernet

SCSI

6

CPU State

� User registers (on Planet Intel)
� General purpose - %eax, %ebx, %ecx, %edx

� Stack Pointer - %esp

� Frame Pointer - %ebp

� Mysterious String Registers - %esi, %edi

7

CPU State

� Non-user registers, aka...
� Processor status register(s)

� User process / Kernel process

� Interrupts on / off

� Virtual memory on / off

� Memory model
� small, medium, large, purple, dinosaur

8

CPU State

� Floating Point Number registers
� Logically part of “User registers”

� Sometimes special instead
� Some machines don't have floating point
� Some processes don't use floating point

9

Story time!

� Time for some fairy tales
� The getpid() story (shortest legal fairy tale)

� The read() story (toddler version)

� The read() story (grade-school version)

10

The Story of getpid()

� User process is computing
� User process calls getpid() library routine

� Library routine executes TRAP(314159)

� The world changes
� Some registers dumped into memory somewhere

� Some registers loaded from memory somewhere
� (else)

� The processor has entered kernel mode

11

User Mode

Operating
System

Process 1

Process 2
CPU

12

Entering Kernel Mode

Operating
System

Process 1

Process 2
CPU

13

Entering Kernel Mode

Operating
System

Process 1

Process 2
CPU

Ethernet
IDE

Floppy
USB

14

The Kernel Runtime Environment

� Language runtimes differ
� ML: no stack, “nothing but heap”

� C: stack-based

� Processor is mostly agnostic
� Trap handler builds kernel runtime environment

� Switches to correct stack

� Turns on virtual memory

� Flushes caches

15

The Story of getpid()

� Process in kernel mode
� u.u_reg[R_EAX] = u.u_pid;

� Return from interrupt
� Processor state restored to user mode

� (modulo %eax)

� User process returns to computing
� Library routine returns %eax as value of getpid()

16

Returning to User Mode

Operating
System

Process 1

Process 2
CPU

17

A Story About read()

� User process is computing

count = read(0, buf, sizeof (buf));
� User process “goes to sleep”
� Operating system issues disk read
� Time passes
� Operating system copies data
� User process wakes up

18

Another Story About read()

� P1: read()
� Trap to kernel mode

� Kernel: issue disk read
� Kernel: switch to P2

� Return from interrupt - but to P2, not P1!

� P2: compute 1/3 of Mandelbrot set

19

Another Story About read()

� Disk: done!
� Interrupt to kernel mode

� Kernel: switch to P1
� Return from interrupt - but to P1, not P2!

20

What do you need for P1?

� Single-process “operating system”
� Only one C runtime environment

� One memory address space, one stack

� Process based on polling

while(1)
 if (time_to_move(paddle))
 move_paddle();
 if ((c = getchar()) != NONE)
 process_char(c);

21

What do you need for P1?

� Keyboard interrupt handler
� Turns key up/down events into characters

� Makes characters available to getchar()
� [not its real name]

� Timer interrupt handler
� Updates “now” when countdown timer fires

� Console driver
� Put/scroll characters/strings on screen

22

Interrupt Vector Table

� How does CPU handle this interrupt?
� Disk interrupt -> disk driver

� Mouse interrupt -> mouse driver

� Need to know
� Where to dump registers

� often: property of current process, not of interrupt

� New register values to load into CPU
� key: new program counter, new status register

23

Interrupt Vector Table

� Table lookup
� Interrupt controller says: this is interrupt source #3

� CPU knows table base pointer, table entry size
� Spew, slurp, off we go

24

Race Conditions

if (device_idle)
 start_device(request);
else
 enqueue(request);

25

Race Conditions
aaaaaa

User process Interrupt handler
if (device_idle)

INTERRUPT
...

device_idle = 1;
RETURN FROM INTERRUPT

enqueue(request)

26

Interrupt masking

� Atomic actions
� Block device interrupt while checking and

enqueueing

� Or use a lock-free data structure
� [left as an exercise for the reader]

� Avoid blocking all interrupts
� [not a big issue for 15-410]

� Avoid blocking too long
� Part of Project 3 grading criteria

27

Timer – Behavior

� Count something
� CPU cycles, bus cycles, microseconds

� When you hit a limit, generate an interrupt
� Reload counter (don't wait for software to do it)

28

Timer – Why?

� Why interrupt a perfectly good execution?
� Avoid CPU hogs

 for (;;) ;
� Maintain accurate time of day

� Battery-backed calendar counts only seconds (poorly)

� Dual-purpose interrupt
� ++ticks_since_boot;

� force process switch (probably)

29

Closing

� Welcome to the machine
� For P1

� Keyboard
� Clock
� Screen
� Memory (a little)

� Browse Intel document introductions?
� Start choosing a partner for P2

