
What You Need to Know
for Project One

Joey Echeverria
Friday, August 29, 2003

15-410 Fall 2003

Carnegie Mellon University 2

Overview

1. Introduction
2. Project One Motivation and Demo
3. Mundane Details in x86

PIC and hardware interrupts, software interrupts and
exceptions, the IDT, privilege levels, segmentation

4. Writing a Device Driver
5. Installing and Using Simics

Carnegie Mellon University 3

A Little Bit About Myself

1. My name is Joey
2. I’m a senior in ECE (sort-of)
3. I took OS with Greg Kesden last fall
4. I, like the rest of the staff, am Here to

Help™

Carnegie Mellon University 4

Project 1 Motivation

1. What are our hopes for project 1?
a) introduction to kernel programming
b) a better understanding of the x86 arch
c) hands-on experience with hardware interrupts

and device drivers
d) get acquainted with the simulator (Simics) and

development tools

Carnegie Mellon University 5

Project 1 Demo

1. Project 1 consists of using the console,
keyboard and timer to create a simple game

3. Demo…

Carnegie Mellon University 6

Mundane Details in x86

1. Kernels work closely with hardware
2. This means you need to know about

hardware
3. Some knowledge (registers, stack

conventions) is assumed from 15-213
4. You will learn more x86 details as the

semester goes on
5. Use the Intel PDF files as reference

(http://www.cs.cmu.edu/~410/projects.html)

Carnegie Mellon University 7

Mundane Details in x86:
Privilege Levels

1. Processor has 4
“privilege levels” (PLs)

2. Zero most privileged,
three least privileged

3. Processor executes at
one of the four PLs at
any given time

4. PLs protect privileged
data, cause general
protection faults

Carnegie Mellon University 8

Mundane Details in x86:
Segmentation

1. When fetching an instruction, the processor asks
for an address that looks like this: CS:EIP

2. So, if %EIP is 0xbeef then this is the 48879th byte
of the CS segment.

3. The CPU looks at the segment selector in %CS
4. A segment selector looks like this:

Carnegie Mellon University 9

Mundane Details in x86:
Segmentation

1. The segment selector has a segment number,
table selector, and requested privilege level (RPL)

2. The segment number is an index into a segment
descriptor table

3. The table select flag selects a descriptor table
4. There are two tables: global descriptor table and a

local descriptor table
5. The RPL’s meaning differs with the segment

register the selector is in
6. For %CS, RPL sets the processor privilege level

Carnegie Mellon University 10

Mundane Details in x86:
Segmentation

1. Segments are defined areas of memory with
particular access/usage constraints

2. Segments descriptors specify a base and a size
3. A segment descriptor looks like this:

Carnegie Mellon University 11

Mundane Details in x86:
Segmentation

1. For our example, if the segment descriptor indexed
by the segment selector in %CS specified a base
address of 0xdead0000

2. Then assuming 0xbeef is smaller than the size of
the segment, the address CS:EIP represents the
linear virtual address 0xdeadbeef

3. This is fed into the page-directory/page-table
system which will be important in project 3

Carnegie Mellon University 12

Mundane Details in x86:
Segmentation

1. CS is the segment register for code
2. SS is the segment register for the stack segment
3. DS is the default segment register for data

read/writes, but ES, FS, and GS can also be used

Carnegie Mellon University 13

Mundane Details in x86:
Segmentation

1. Segments need not be backed by physical
memory and can overlap

2. Segments defined for these projects:

Kernel Code Kernel Data User Code User Data

0xFFFFFFFF

0x00000000

Not This Project

Carnegie Mellon University 14

Mundane Details in x86:
Segmentation

1. Why so many?
2. You can’t specify a segment that is

readable, writable and executable.
3. Therefore one for readable/executable code
4. Another for readable/writable data
5. Need user and kernel segments in project 3

for protection

Carnegie Mellon University 15

Mundane Details in x86:
Segmentation

1. Don’t need to be concerned with the
mundane details of segments in this class

2. For more information you can read the intel
docs or our documentation at:

http://www.cs.cmu.edu/~410/doc/segments/segments.html

Carnegie Mellon University 16

Mundane Details in x86:
Getting into Kernel Mode

1. How do we get from user mode (PL3) to
kernel mode (PL0)?

a) Exception (divide by zero, etc)

b) Software Interrupt (int n instruction)

c) Hardware Interrupt (keyboard, timer, etc)

Carnegie Mellon University 17

Mundane Details in x86:
Exceptions

1. Sometimes user processes do stupid things
2. int gorganzola = 128/0;
3. char* idiot_ptr = NULL; *idiot_ptr = 0;
4. These cause a handler routine to be

executed at PL0
5. Examples include divide by zero, general

protection fault, page fault

Carnegie Mellon University 18

Mundane Details in x86:
Software Interrupts

1. A device gets the kernel’s attention by
raising an interrupt

2. User processes get the kernel’s attention by
raising a software interrupt

3. x86 instruction int n
(more info on page 346 of intel-isr.pdf)

4. Executes handler routine at PL0

Carnegie Mellon University 19

Mundane Details in x86:
Interrupts and the PIC

1. Devices raise interrupts through the
Programmable Interrupt Controller (PIC)

2. The PIC serializes interrupts, delivers them
3. There are actually two daisy-chained PICs

CPU
PIC 1 PIC 2

Timer Keyboard IDE 1 IDE 2

Carnegie Mellon University 20

Mundane Details in x86:
Interrupts and the PIC

IDE Bus7

IDE Bus6

Coprocessor5

General I/O4

General I/O3

General I/O2

General I/O1

Real Time Clock0

PIC 2

LPT17

Floppy6

LPT25

COM14

COM23

Second PIC2

Keyboard1

Timer0

PIC 1
To Processor

Carnegie Mellon University 21

Mundane Details in x86:
Interrupt Descriptor Table
(IDT)

1. Processor needs info on what handler to run when
2. Processor reads appropriate IDT entry depending

on the interrupt, exception or int n instruction

3. An entry in the IDT looks like this:

Carnegie Mellon University 22

Mundane Details in x86:
Interrupt Descriptor Table
(IDT)

1. The first 32 entries in the IDT correspond to processor
exceptions. 32-255 correspond to hardware/software
interrupts

2. Some interesting entries:

More information in section 5.12 of intel-sys.pdf.Keyboard32

Page fault14

Divide by zero0

InterruptIDT Entry

Carnegie Mellon University 23

Mundane Details in x86:
Communicating with Devices

1. I/O Ports
a) use instructions like inb, outb
b) use separate address space

2. Memory-Mapped I/O
a) magic areas of memory tied to devices
b) console is one of them

Carnegie Mellon University 24

Writing a Device Driver

1. Traditionally consist of two separate halves
a) named “top” and “bottom” halves
b) BSD and Linux use these names differently

2. One half is interrupt driven, executes
quickly, queues work

3. The other half processes queued work at a
more convenient time

Carnegie Mellon University 25

Writing a Device Driver

1. For this project, your keyboard driver will likely
have a top and bottom half

2. Bottom half:
a) Responds to keyboard interrupts and enqueue scan

codes

3. Top half:
a) In readchar(), read from the queue and processes scan

codes into characters

Carnegie Mellon University 26

Installing and Using Simics

1. Simics is an instruction set simulator
2. Makes testing kernels MUCH easier
3. Runs on both x86 and Solaris

a) If you want to run from Solaris, we can try and
accommodate, but the tarball only has linux
support

Carnegie Mellon University 27

Installing and Using Simics:
Running on AFS

1. We use mtools to copy to disk image files
2. Proj1 Makefile sets up config file for you
3. You must exec simics in your project dir
4. The proj1.tar.gz includes:

a) Only simics-linux.sh right now, can provide
simics-solaris.sh if you are really interested

Carnegie Mellon University 28

Installing and Using Simics:
Running on AFS

1. We give you some volume space
2. It is located here:

/afs/cs.cmu.edu/academic/class/15410-f03/usr/<user-id>

3. You should use this volume
4. This way, if you have a problem the staff will

have permission to look at your code
5. This will help speed up answers to your

questions

Carnegie Mellon University 29

Installing and Using Simics:
Running on Personal PC

1. Runs under Linux or Solaris (we will try to
support this)

2. As of now you need a 128.2.*.* IP or a node
locked license (takes a day or two to get
this)

3. Download simics-linux.tar.gz (real soon™)
4. Install mtools RPM (pointer on course www)
5. Tweak Makefile

Carnegie Mellon University 30

Installing and Using Simics:
Debugging

1. Run simulation with r, stop with ctl-c
2. Magic instruction

a) xchg %bx,%bx (wrapper in interrupts.h)

3. Memory access breakpoints
a) break 0x2000 –x OR break (sym init_timer)

4. Symbolic debugging
a) psym foo OR print (sym foo)

5. Demo

