
1

OS Overview

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� Project 1
� “Unexpected interrupt 0” is expected

� See the handout!!!

� Memory and I/O ports are not the same
� Two separate address spaces
� I/O ports use special instructions
� See the handout!
� See the P1 lecture!

3

Synchronization

� Reading
� Today – Chapter 1, more or less

� Upcoming
� Chapter 4 (Process) – Skip 4.5, 4.6
� Chapter 5 (Thread)
� Chapter 7 (Synchronization) – Skip 7.9

4

Outline

� What is an OS?
� “A home for a process”

� Brief history

� Special topics for special hardware

5

What is an OS?

� PalmOS
� 1 user, 1 task

� IBM VM/CMS
� 1000 users, 1 (DOS box) task apiece

� Capability-based OS
� What is a user?

6

What is an OS?

� Size
� 16 kilobytes?

� 16 megabytes?

� Portable:
� Of course!!!

� Why???

� Consensus elusive
� “The stuff between the hardware and the application”

7

Common Features

� Abstraction layer
� People want files, not sectors

� People want I/O, not interrupts

� People want date & time, not "ticks since boot"

� Or: Obstruction layer
� See: Exokernel

8

Common Features

� Virtualization
� Give everybody “their own” machine

� IBM's VM/SP is “strong” virtualization
� Your own 3081!

� Unix process is like a virtual machine too
� Next lecture

9

Common Features

� Protected Sharing (Controlled Interference)
� Shared disk

� space-sliced

� Shared CPU
� time-sliced

� Shared keyboard/display
� Hmm...

� Shared memory
� Hmm...

10

Single-process OS

� Examples
� DEC's RT-11

� moment of silence

� CP/M (and its clone, MS-DOS)

� Apple DOS

� UCSD p-system

11

Single-process OS

� Typical features
� One active program

� Some memory management

� A "file system"

� A command interpreter
� “Built-in” commands

� DIR, SET, ^C
� “External” commands

� compiler, editor

12

Mainframe “Batch” OS

� Examples
� IBM HASP?

� Typical features
� One active program

� I/O library
� Card reader, tape drive, printer

� Load next program
� (completion or “abend”)

13

Mainframe “Batch” OS

� Wasteful
� Usually much of machine is idle

14

Multiprogramming Batch OS

� Key insight
� Sometimes two programs fit in memory

� Each program is often waiting for I/O

� Two for the price of one!

15

Multiprogramming Batch OS

� Typical features
� Job scheduling

� semi-ordered entry to memory
� no longer a hot research topic

� Processor scheduling
� multiplexing CPU somehow

� Input/Output stream abstraction
� virtual card reader/punch
� JCL!

16

Multiprogramming Batch OS

� Typical features
� Memory mapping or linkage discipline

� (Hopefully) crash isolation

� Examples
� IBM MVT, MVS

17

Timesharing

� Key Insight
� (none)

� Timesharing = Interactive Multiprogramming
� Memory cheap enough for lots of processes

� Terminals cheap enough for lots of users

18

Timesharing

� Examples
� CTS, ITS, TENEX

� VM/CMS

� MVS/TSO

� Multics

� Unix

19

Timesharing

� Typical features
� Swapping processes out of memory

� Virtual memory

� Fancy process scheduling (priorities, ...)

� Inter-user/inter-process communication!
� Why not? You're all logged in all day...

20

Shared-memory Multiprocessors

� Requirements
� cheap processors

� shared memory with some coherence

� Advantages
� Throughput

� linear if you're lucky

� Resource sharing efficiency (one box, one net port)
� but maybe: resource hot-spot inefficiency

� Machine can keep running if one processor dies

21

Asymmetric Multiprocessing

� Typical
� One processor runs the OS kernel

� Other processors run user tasks

� Cheap hack
� Easy to adapt a 1-processor OS

� Downside
� Kernel is a “hot spot”

22

Symmetric Multiprocessing

� What you naively expect
� Re-entrant multi-threaded kernel
� Fascinating problems

� TLB shoot-downs

23

Distributed Applications

� Concept
� Yodeling from one mountain peak to another

� Client-server
� WWW

� File service

24

Distributed Applications

� Message passing / “Peer-to-peer”
� e-mail

� USENET

� music/movie “sharing”

� “ad-hoc networking”

� “sensor” nets

25

Loosely-Coupled Distributed
Applications

� Sample Challenges
� Time delays may be large

� Vinge, Fire Upon the Deep
� Clarke, Songs of Distant Earth

� Group membership generally un-knowable

� Messages must be somewhat self-contained

� Temporal coherence often very weak

� No authority to trust

26

Loosely-Coupled Distributed
Applications

� Advantages
� Large systems can grow with minimal central

planning

� Large, useful systems
� e-mail, USENET, WWW

� Aggregate throughput can be enormous

� Systems can keep working despite damage
� “The Net interprets censorship as damage and routes

around it” – John Gilmore

27

Distributed File Systems

� Typical features
� Single global namespace

� Everybody agrees on mapping between files & names

� Many servers, but invisible
� Server name not part of file name
� File motion among servers is transparent

� Authentication across administrative boundaries

� Some client autonomy
� Avoid server hot spots

28

Distributed File Systems

� Examples
� AFS

� OpenAFS

� Arla

� Coda

� “Storage” is hot
� So maybe the time has come

29

Distributed Operating Systems

� Intuition
� Mixture of remote and local resources

� Interactive process
� Local memory, processor, display, keyboard, mouse

� Remote file system

� Server process
� Local memory, processor (maybe disk)

30

Distributed Operating Systems

� Examples
� Locus

� Amoeba

� Sprite

� Plan 9

� ~Mach

31

Distributed Operating Systems

� Common emphases
� “Capabilities” for objects

� remote or local
� (non-forgeable handles require cryptography)

� User-centric namespaces
� My "/tmp" is mine

� One namespace:
� files, processes, memory, devices

32

Real-time Systems

� Sometimes time matters
� Music

� “small” glitches sound bad

� Gaming
� must match hand/eye coordination

� Factory process control

� Avionics

33

Real-time Systems

� Hard real-time
� Glitch means something goes boom
� Avoid things with unpredictable timing

� Virtual memory, disks

� Seriously over-engineer

� Soft real-time
� Ok to do it right “most of the time”

� Minor changes to existing OS help a lot
� Fancy scheduler, fancy mutexes, memory locking

34

Mobile Computing

� Examples
� PDAs

� Laptops

� Sensor networks

� Standard resources are tight
� Memory

� Processor speed

� Screen size

35

Mobile Computing

� New worries
� Intermittent connectivity

� Self-organization

� Power

36

Summary - 1

� Resource abstraction

� Packets ⇒ reliable byte streams

� Disk sectors ⇒ files

� Resource naming

37

Summary - 2

� Resource sharing/protection
� CPU time slicing

� Memory swapping/paging

� Disk quotas

38

Summary - 3

� Communication & Synchronization
� Messaging

� Synchronizing & coherence

39

Closing

� Friday: The Process

