
1

The Process

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� Exam flavor?
� Is 50 minutes enough?

� Two mid-terms? Evening exam?

� Concurrency expertise?
� Monitor? P()/V()? Mutex? Condition?

� Anybody reading comp.risks?
� Today

� Chapter 4, more or less

3

How's it going?

� You should have tried simics
� (really)

� Just do something
� Put some characters somewhere on the screen

� Then loop forever

� Weekends are fine
� but please don't skip this one!

4

Outline

� Process as pseudo-machine
� (that's all there is)

� Process life cycle
� Process kernel states
� Process kernel state

5

The Computer

Stack

Program

Registers

Keyboard

Screen

Timer

6

The Process

Stack

Code
Data
Heap

Registers

stdin

stdout

timer

7

Process life cycle

� Birth
� (or, well, fission)

� School
� Work
� Death
� (Nomenclature courtesy of The Godfathers)

8

Birth

� Where do new processes come from?
� (Not: under a cabbage leaf, by stork, ...)

� What do we need?
� Memory contents

� CPU register contents (all N of them)

� "I/O ports"

� File descriptors

� Hidden stuff (timer state, current directory, umask)

9

Birth

� Intimidating?
� How to specify all of that stuff?

� What is your {name,quest,favorite_color}?

� Gee, we already have one process we like...

10

Birth - fork()

� Memory
� Copy all of it

� Maybe using VM tricks so it' s cheaper

� Registers
� Copy all of them

� All but one: parent learns child's process ID, child gets 0

11

Birth - fork()

� File descriptors
� Copy all of them

� Can't copy the files!
� Copy references to open-file state

� Hidden stuff
� Do whatever is "obvious"

12

Now what?

� Two copies of the same process is boring
� Transplant surgery!

� Implant new memory!
� New program text

� Implant new registers!
� Old ones don't point well into the new memory

� Keep (most) file descriptors
� Good for cooperation/delegation

13

Now what?

� Hidden state?
� Do what's “obvious”

� What do we call this procedure?
� int execve(
� char *path,
� char *argv[],
� char *envp[])

14

Birth - other ways

� There is another way
� Well, two

� spawn()
� Carefully specify all features of new process

� Don't need to copy stuff you will immediately toss

� Plan 9 rfork() / Linux clone()
� Build new process from old one

� Specify which things get shared vs. copied

15

School

� Old process called
execve(
 char *path,
 char *argv[],
 char *envp[]);

� Result is
char **environ;
main(int argc, char *argv[]) {
 ...
}

16

School

� How does the magic work?
� 15-410 motto: No magic

� Kernel process setup
� Toss old data memory

� Toss old stack memory

� Load executable file

� and...

17

The stack!

� Kernel builds stack for new process
� Transfer argv[] and envp[] to top of new process stack

� Hand-craft stack frame for ~main()

� Set registers
� stack pointer (to top frame)
� program counter (to start of ~main())

� (What's a ~main()?)

18

The mysterious ~main()

� What's in a name?
� may be ~main(), _main(), @main()

� Any illegal name will do

� ~main(argc, argv, envp)
� environ = envp;
� exit(main(argc, argv));

� Where does ~main() come from?
� .../.../crt0.o

19

Work

� Process states
� Running

� user mode
� kernel mode

� Runnable
� user mode
� kernel mode

� Sleeping
� in condition_wait(), more or less

20

Work

� Other process states
� Forking

� Zombie

� “Exercise for the reader”
� Draw the state transition diagram

21

Death

� Voluntary
� void exit(int reason);

� Software exception
� SIGXCPU - used "too much" CPU time

� Hardware exception
� SIGSEGV - no memory there for you!

22

Death

� kill(pid, sig);

� ^C ⇒ kill(getpid(), SIGINT);

� Start logging
� kill(daemon_pid, SIGUSR1);
� % kill -USR1 33
� Lost in Space

� kill(Will_Robinson, SIGDANGER);
� I apologize to IBM for lampooning their serious signal
� No, I apologize for that apology...

23

Process cleanup

� Resource release
� Open files: close()

� TCP: 2 minutes (or more)
� Solaris disk offline - forever (“None shall pass!”)

� Memory: release

� Accounting
� Record resource usage in a magic file

� Gone?

24

“All You Zombies”

� Zombie process
� Process state reduced to exit code

� Wait around until parent calls wait()
� Copy exit code to parent memory
� Delete PCB

25

Kernel process state

� The dreaded "PCB"
� (poly-chloro-biphenol?)

� Process Control Block
� “Everything without a memory address”

26

Sample PCB contents

� CPU register save area
� Process number, parent process number
� Countdown timer value
� Memory segment info

� User memory segment list

� Kernel stack reference

� Scheduler info
� linked list slot, priority, “sleep channel”

27

The Big Picture

Stack

Program

Stack

Program

Stack

Program

Stack

Program

k-stack
k-stack

k-stack
k-stack

Kernel Data

Kernel Program

28

Ready to start?

� Not so complicated...
� getpid()

� fork()

� exec()

� exit()

� wait()

� What could possibly go wrong?

