
1

The Thread

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� If you haven't run simics yet

� You could be in real trouble

� Your screen driver should be done (at least)

� This isn't like other programming

� C (not C++, not Java) – things don't happen for you

� Assembly language

� Hardware isn't clean

� Project 1 is a warm-up

� Next stop: thread library

3

Outline

� Textbook chapters

� Already: Chapters 1 through 4

� Today: Chapter 5 (roughly)

� Soon: Chapters 7 & 8

� Transactions (7.9) will be deferred

4

Outline

� Thread = schedulable registers

� (that's all there is)

� Why threads?

� Thread flavors (ratios)

� (Against) cancellation

� Race conditions

� 1 simple, 1 ouch

5

Single-threaded Process

Stack

Code
Data
Heap

Registers

stdin

stdout

timer

6

Multi-threaded Process

stdin

stdout

timer
Code
Data
Heap

Stack Registers
Stack Registers
Stack Registers

7

What does that mean?

� Three stacks

� Three sets of “local variables”

� Three register sets

� Three stack pointers

� Three %eax's (etc.)

� Three schedulable RAM mutators

� (heartfelt but partial apologies to the ML crowd)

� Three potential bad interactions

8

Why threads?

� Shared access to data structures

� Server for a multi-player game

� Many players

� Access (& update) shared world state

� Scan multiple objects

� Update one or two objects

9

Why threads?

� Process per player?

� Processes share objects only via system calls

� Hard to make game objects = operating system
objects

� Process per game object?

� “Scan multiple objects, update one”

� Lots of message passing between processes

� Lots of memory wasted for lots of processes

� Slow

10

Why threads?

� Thread per player

� Game objects inside single memory address space

� Each thread can access & update game objects

� Shared access to OS objects (files)

� Thread-switch is cheap

� Store N registers

� Load N registers

11

Responsiveness

� “Cancel” button vs. decompressing large JPEG

� Handle mouse click during 10-second process

� Map (x,y) to “cancel button” area

� Check that button-release happens in same area

� ...without JPEG decompressor understanding clicks

12

Multiprocessor speedup

� More CPUs can't help a single-threaded process!

� PhotoShop color dither operation

� Divide image into regions

� One dither thread per CPU

� Can (sometimes) get linear speedup

13

Kinds of threads

� User-space (N:1)

� Kernel threads (1:1)

� Many-to-many (M:N)

14

User-space threads (N:1)

� Internal threading

� Thread library adds
threads to a process

� Thread switch just
swaps registers

Code
Data
Heap

Stack
Stack Registers
Stack

15

User-space threads (N:1)

� No change to operating system

� System call may block all “ threads”

� Kernel blocks “ the process”

� (special non-blocking system calls can help)

� “ Cooperative scheduling” awkward/insufficient

� Must manually insert many calls to yield()

� Cannot go faster on multiprocessor machines

16

Pure kernel threads (1:1)

� OS-supported
threading

� OS knows
thread/process
ownership

� Memory regions
shared & reference-
counted

Code
Data
Heap

Stack Registers
Stack Registers
Stack Registers

17

Pure kernel threads (1:1)

� Every thread is sacred

� Kernel-managed register set

� Kernel stack

� “ Real” (timer-triggered) scheduling

� Features

� Program runs faster on multiprocessor

� User-space libraries must be rewritten

� Require kernel memory (PCB, stack)

18

Many-to-many (M:N)

� Middle ground

� OS provides kernel
threads

� M user threads share N
kernel threads

Code
Data
Heap

Stack
Stack Registers
Stack Registers

19

Many-to-many (M:N)

� Sharing patterns

� Dedicated

� User thread 12 owns kernel thread 1

� Shared

� 1 kernel thread per hardware CPU

� Kernel thread executes next runnable user thread

� Many variations, see text

� Features

� Great when scheduling works as you expected!

20

(Against) Thread Cancellation

� Thread cancellation

� We don't want the result of that computation

� (“ Cancel button”)

� Asynchronous (immediate) cancellation

� Stop execution now

� Free stack, registers

� Poof!

� Hard to garbage-collect resources (open files, ...)

� Invalidates data structure consistency!

21

(Against) Thread Cancellation

� Deferred ("pretty please") cancellation

� Write down “ thread #314, please go away”

� Threads must check for cancellation

� Or define safe cancellation points

� “ Any time I call close() it's ok to zap me”

� The only safe way (IMHO)

22

Race conditions

� What you think
 ticket = next_ticket++;

� What really happens (in general)
 ticket = temp = next_ticket;
 ++temp;
 next_ticket = temp;

23

Murphy' s Law (of threading)

� The world may arbitrarily interleave execution

� It will choose the most painful way

� “ Once chance in a million” happens every minute

24

Race condition example

T0 T1
ticket = temp =
next_ticket;

ticket = temp =
next_ticket;

++temp;
++temp;

next_ticket = temp;
next_ticket = temp;

Effect: temp += 1; /* not 2 */

25

The #! shell-script hack

� What's a “ shell script” ?

	 A file with a bunch of (shell-specific) shell
commands

 #!/bin/sh
 echo “My hovercraft is full of eels”
 sleep 10
 exit 0

26

The #! shell-script hack

� What's "#!"?

 A venerable hack

� You say

� execl("/foo/script", "script", "arg1", 0);

� /foo/script begins...

� #!/bin/sh

� The kernel does...

 execl("/bin/sh" "/foo/script" "arg1" , 0);

27

The setuid invention

� U.S. Patent #4,135,240

 Dennis M. Ritchie

 January 16, 1979

� The concept

 A program with stored privileges

 When executed, runs with two identities

� invoker's identity

� file owner's identity

28

Setuid example - printing a file

� Goals

 Every user can queue files

 Users cannot delete other users' files

� Solution

 Queue directory owned by user printer

 Setuid queue-file program

� Create queue file as user printer

� Copy user data as user joe

 User printer controls user joe's queue access

29

Race condition example

Process 0 Process 1
ln -s /foo/lpr /tmp/lpr

run /tmp/lpr
[become printer]

run /bin/sh /tmp/lpr
rm /tmp/lpr

ln -s /my/exploit /tmp/lpr
script = open(“/tmp/lpr”);

execute /my/exploit

30

How to solve race conditions?

� Carefully analyze operation sequences

� Find subsequences which must be uninterrupted

 “ Critical section”

� Use a synchronization mechanism

 Next time!

31

Thread-specific Data

� Threads share code, data, heap

� How to write these?
printf("I am thread %d\n" ,
 thread_id());

thread_status[thread_id()] = BUSY;

printf("Client machine is %s\n",
 thread_var(0));

� Need a little anti-sharing

32

Thread-specific Data

� thread_id() = system call?

 too expensive!

� Simple C routine?
int thread_id(void) {
 extern int thread_id;
 return (thread_id);
}

 shared memory: all int's have same value

� Think about what's not shared...

33

TSD: Reserved register

� Many microprocessors have 32 user registers

� Devote one to thread data pointer

� X86 architecture has four general-purpose registers

� (oops)

� Stack trick

� Assume all thread stacks have same size

� Store private data area at top of stack

� Compute “ top of stack” given any stack address

� “ exercise for the reader”

