
1

Synchronization (1)

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� Makefile shakeup

� Documentation is done, right?

� “Coding standards”

� Watch for announcements

� Handin

� Partner selection for Project 2

� How to watch for announcements

� .../410/pub/410biff (an X program)

� (or any other manner of your choice)

3

Outline

� Me vs. Chapter 7

� Mind your P's and Q's

� Atomic sequences vs. voluntary de-scheduling

� “Sim City” example

� You will need to read the chapter

� Hopefully my preparation/review will clarify it

4

Outline

� An intrusion from the “real world”

� Two fundamental operations

� Three necessary critical-section properties

� Two-process solution

� N-process “Bakery Algorithm”

5

Mind your P's and Q's

� What you write
 choosing[i] = true;
 number[i] =
 max(number[0], number[1], ...) + 1;
 choosing[i] = false;

� What happens...
 number[i] =
 max(number[0], number[1], ...) + 1;
 choosing[i] = false;

6

Mind your P's and Q's

� What you write
 choosing[i] = true;
 number[i] =
 max(number[0], number[1], ...) + 1;
 choosing[i] = false;

� Or maybe...
 choosing[i] = false;
 number[i] =
 max(number[0], number[1], ...) + 1;

� “ Computer Architecture for $200, Dave” ...

7

My computer is broken?!

� No, your computer is
"modern"

� Processor "write pipe"
queues memory stores

� ...and coalesces
"redundant" writes!

� Crazy?

� Not if you're pounding
out pixels!

CPU

Memory

choosing[i] false

number[i] 45

choosing[i] true

8

My computer is broken?!

� Magic "memory barrier" instructions available

� ...stall processor until write pipe is empty

� Ok, now I understand

� Probably not!

� http://www.cs.umd.edu/~pugh/java/memoryModel/

� “ Double-Checked Locking is Broken” Declaration

� See also "release consistency"

� Textbook's memory model

� ...is “ what you expect”

9

Synchronization Fundamentals

� Two fundamental operations

� Atomic instruction sequence

� Voluntary de-scheduling

� Multiple implementations of each

� Uniprocessor vs. multiprocessor

� Special hardware vs. special algorithm

� Different OS techniques

� Performance tuning for special cases

10

Synchronization Fundamentals

� Multiple client abstractions

� Textbook covers

� Semaphore, critical region, monitor

� Very relevant

� Mutex/condition variable (POSIX pthreads)

� Java "synchronized" keyword (3 uses)

11

Atomic instruction sequence

� Problem domain

� Short sequence of instructions

� Nobody else may interleave same sequence

� or a "related" sequence

� “ Typically” nobody is competing

12

Non-interference

� Multiprocessor simulation (think: “ Sim City”)

� Coarse-grained “ turn” (think: hour)

� Lots of activity within turn

� Think: M:N threads, M=objects, N=#processors

� Most cars don't interact in a turn...

� Must model those that do!

13

Commerce

Customer 0 Customer 1
cash = store->cash; cash = store->cash;
cash += 50; cash += 20;
wallet -= 50; wallet -= 20;
store->cash = cash; store->cash = cash;

Should the store call the police?
Is deflation good for the economy?

14

Commerce – Observations

� Instruction sequences are “ short”

� Ok to force competitors to wait

� Probability of collision is "low"

� Want cheap non-interference method

15

Voluntary de-scheduling

� Problem domain

� “ Are we there yet?”

� “ Waiting for Godot”

� Example - "Sim City" disaster daemon
while (date < 1906-04-18) cwait(date);
while (hour < 5) cwait(hour);
for (i = 0; i < max_x; i++)
 for (j = 0; j < max_y; j++)
 wreak_havoc(i,j);

16

Voluntary de-scheduling

� Making others wait is wrong

� It will be a while

� We don't want exclusion

� We want others to run - they enable us

� CPU de-scheduling is an OS service!

17

Voluntary de-scheduling

� Wait pattern
 LOCK WORLD
 while (!(ready = scan_world()))
 UNLOCK WORLD
 WAIT_FOR(progress_event)

� Your partner/competitor will
 SIGNAL(progress_event)

18

Nomenclature

� Textbook's code skeleton / naming
do {
 entry section
 critical section:
 ...computation on shared state...
 exit section
 remainder section:
 ...private computation...
} while (1);

19

Nomenclature

� What's muted by this picture?

� What's in that critical section?

� Quick atomic sequence?

� Need for a long sleep?

20

Three Critical Section Requirements

� Mutual Exclusion

� At most one process executing critical section

� Progress

� Choosing next entrant cannot involve nonparticipants

� Choosing protocol must have bounded time

� Bounded waiting

� Cannot wait forever once you begin entry protocol

� ...bounded number of entries by others

21

Conventions for 2-process algorithms

� Process[i] = “ us”

� Process[j] = “ the other process”

� i, j are process-local variables

� {i,j} = {0,1}

� j == 1 - i

22

First idea - “ Taking Turns”

int turn = 0;
while (turn != i)
 ;
...critical section...
turn = j;

� Mutual exclusion - yes

� Progress - no

� Strict turn-taking is fatal

� If P[i] never tries to enter, P[j] will wait forever

23

Second idea - “ Registering Interest”

boolean want[2] = {false, false};
want[i] = true;
while (want[j])
 ;
...critical section...
want[i] = false;

� Mutual exclusion – yes

� Progress - almost

24

Failing “ progress”

Customer 0 Customer 1
want[0] = true;

want[1] = true;
while (want[1]) ;

while (want[0]) ;

It works the rest of the time!

25

“ Taking turns when necessary”

� Rubbing two ideas together
boolean want[2] = {false, false};
int turn = 0;
want[i] = true;
turn = j;
while (want[j] && turn == j)
;
...critical section...
want[i] = false;

26

Proof sketch of exclusion

� Both in c.s. implies want[i] == want[j] == true

� Thus both while loops exited because “ turn != j”

� Cannot have (turn == 0 && turn == 1)

� So one exited first

� w.l.o.g., P0 exited first

� So turn==0 before turn==1

� So P1 had to set turn==0 before P0 set turn==1

� So P0 could not see turn==0, could not exit loop first!

27

Bakery Algorithm

� More than two processes?

� Generalization based on bakery/deli counter

� Take a ticket from the dispenser

� Unlike “ reality” , two people can get the same ticket
number

� Sort by (ticket number, process number)

28

Bakery Algorithm

� Phase 1 – Pick a number

� Look at all presently-available numbers

� Add 1 to highest you can find

� Phase 2 – Wait until you hold lowest number

� Well, lowest (ticket, process) number

29

Bakery Algorithm

boolean choosing[n] = { false, ... };
int number[n] = { 0, ... } ;

30

Bakery Algorithm

� Phase 1: Pick a number
choosing[i] = true;

number[i] =
 max(number[0], number[1], ...) + 1;

choosing[i] = false;

31

Bakery Algorithm

� Phase 2: Wait to hold lowest number
for (j = 0; j < n; ++j) {
while (choosing[j])
 ;
while ((number[j] != 0) &&
 ((number[j], j) < (number[i], i)))
 ;
}
...critical section...
number[i] = 0;

32

Summary

� Memory is weird

� Two fundamental operations

� Brief exclusion for atomic sequences

� Long-term yielding to get what you want

� Three necessary critical-section properties

� Two-process solution

� N-process “ Bakery Algorithm”

