
1

Synchronization (2)

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� Handing in

� Issues are possible

� Don't mail us your assignment

� Try hand-in now

� Thank you

3

Outline

� Last time

� Two building blocks

� Three requirements for mutual exclusion

� Algorithms people don't use for mutual exclusion

� Today

� Ways to really do mutual exclusion

4

Mutual Exclusion: Reminder

� Protects an atomic instruction sequence

� Do "something" to guard against

� CPU switching to another thread

� Thread running on another CPU

� Assumptions

� Atomic instruction sequence will be “short”

� No other thread “likely” to compete

5

Mutual Exclusion: Goals

� Typical case (no competitor) should be fast

� Atypical case can be slow

� Should not be “ too wasteful”

6

Mutex aka Lock aka Latch

� Object specifies interfering code sequences

� Data item(s) “ protected by the mutex”

� Methods encapsulate entry & exit protocols
 mutex_lock(&store->lock);
 cash = store->cash
 cash += 50;
 personal_cash -= 50;
 store->cash = cash;
 mutex_unlock(&store->lock);

� What's inside?

7

Mutual Exclusion: Atomic Exchange

� Intel x86 XCHG instruction

� intel-isr.pdf page 754

� xchg (%esi), %edi
int32 xchg(int32 *lock, int32 val) {
 register int old;
 old = *lock; /* bus is locked */
 lock = val; / bus is locked */
 return (old);
}

8

Inside a Mutex

� Initialization
int lock_available = 1;

� Try-lock
i_won = xchg(&lock_available, 0);

� Spin-wait
while (!xchg(&lock_available, 0)
 /* nothing */ ;

� Unlock
xchg(&lock_available, 1); /*expect 0*/

9

Strangers in the Night, Exchanging 0's

1

Thread

0
?

Thread
?

0

10

And the winner is...

0

Thread
0

Thread
1

11

Does it work?

[What are the questions, again?]

12

Does it work?

� Mutual Exclusion

� Progress

� Bounded Waiting

13

Does it work?

� Mutual Exclusion

� Only one thread can see lock_available == 1

� Progress

� Whenever lock_available == 1 a thread will get it

� Bounded Waiting

� No

� A thread can lose arbitrarily many times

14

Attaining Bounded Waiting

� Lock
waiting[i] = true;
got_it = false;
while (waiting[i] && !got_it)
 got_it = xchg(&lock_available,
 false);
waiting[i] = false;

15

Attaining Bounded Waiting

� Unlock
j = (i + 1) % n;
while ((j != i) && !waiting[j])
 j = (i + 1) % n;
 if (j == i)
 xchg(&lock_available, true); /*W*/
 else
 waiting[j] = false;

16

Attaining Bounded Waiting

� Versus textbook

� Swap vs. TestAndSet

� “ Available” vs. “ locked”

� Atomic release vs. normal memory write

� Locker does XCHG, unlocker does too

� Mandatory on many shared-memory processors

� Text does “ blind write” at point “ W”

17

Evaluation

� One awkward requirement

� One unfortunate behavior

18

Evaluation

� One awkward requirement

� Everybody knows size of thread population

� Always & instantly!

� Or uses an upper bound

� One unfortunate behavior

� Recall: expect zero competitors

� Algorithm: O(n) in maximum possible competitors

� Am I too demanding?

� After all, Baker's Algorithm has these misfeatures...

19

Uniprocessor Environment

� Lock

� What if xchg() didn't work the first time?

� Some other process has the lock

� That process isn't running (because you are)

� xchg() loop is a waste of time

� Unlock

� What about bounded waiting?

� Next xchg() winner “ chosen” by thread scheduler

� How capricious are real thread schedulers?

20

Multiprocessor Environment

� Lock

� Spin-waiting probably justified

� (why?)

� Unlock

� Next xchg() winner “ chosen” by memory hardware

� How capricious are real memory controllers?

21

Test&Set

boolean testandset(int32 *lock) {
register boolean old;
 old = *lock; /* bus is locked */
 lock = true; / bus is locked */
 return (old);
}

� Conceptually simpler than XCHG?

� Or not

22

Load-linked, Store-conditional

� For multiprocessors

� “ Bus locking considered harmful”

� Split XCHG into halves

� Load-linked fetches old value from memory

� Store-conditional stores new value

� If nobody else did

� Your cache “ snoops” the bus

� Better than locking it!

23

Intel i860 magic lock bit

� Instruction sets processor in “ lock mode”

� Locks bus

� Disables interrupts

� Isn't that dangerous?

� 32-cycle countdown timer triggers unlock

� Exception triggers unlock

� Memory write triggers unlock

24

Mutual Exclusion: Software

� Lamport's “ Fast Mutual Exclusion” algorithm

� 5 writes, 2 reads (if no contention)

� Not bounded-waiting (in theory, i.e., if contention)

� http://www.hpl.hp.com/techreports/Compaq-
DEC/SRC-RR-7.html

� Why not use it?

� What kind of memory writes/reads?

25

Passing the Buck

� Q: Why not ask the OS to provide mutex_lock()?

� Easy on a uniprocessor...

� Kernel automatically excludes other threads

� Kernel can easily disable interrupts

� Kernel has special power on a multiprocessor

� Can issue “ remote interrupt” to other CPUs

� So why not rely on OS?

26

Passing the Buck

� A: Too expensive

� Because... (you know this song!)

27

Mutual Exclusion: Tricky Software

� Fast Mutual Exclusion for Uniprocessors

� Bershad, Redell, Ellis: ASPLOS V (1992)

� Want uninterruptable instruction sequences?

� Pretend!
 scash = store->cash;
 scash += 10;
 wallet -= 10;
 store->cash = scash;

� Usually won't be interrupted...

28

How can that work?

� Kernel detects “ context switch during sequence”

	 Maybe a small set of instructions

	 Maybe particular memory areas

	 Maybe a flag
 no_interruption_please = 1;

� Kernel handles unusual case

	 Hand out another time slice? (Is that ok?)

	 Simulate unfinished instructions (yuck)

	 Idempotent sequence: slide PC back to start

29

Review

� Atomic instruction sequence

	 Nobody else may interleave same/” related” sequence

	 Short sequence of instructions

 Ok to force competitors to wait

	 Probability of collision is “ low”

 Avoid expensive exclusion method

� Voluntary de-scheduling

	 Can't proceed with this world state

	 Unlock world, yield CPU: other threads enable us

