
1

Synchronization (3)

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� P2 (et seq.) partners

� “Partner Registration Page” on web site

� Good things to talk about

� How many late days?

� Projects in other classes?

� Auditing or pass/fail?

� Prior experience

� Class load

3

Outline

� Condition variables

� Under the hood

� The atomic-sleep problem

� Semaphores

� Monitors

4

Voluntary de-scheduling

� The Situation

� You hold lock on shared resource

� But it's not in “the right mode”

� Action sequence

� Unlock shared resource

� Go to sleep until resource changes state

5

What not to do

while (!reckoning) {
 mutex_lock(&scenario_lk);
 if ((date >= 1906-04-18) &&
 (hour >= 5))
 reckoning = true;
 else
 mutex_unlock(&scenario_lk);
}
wreak_general_havoc();
mutex_unlock(&scenario_lk);

6

Arguably Less Wrong

while (!reckoning) {
 mutex_lock(&scenario_lk);
 if ((date >= 1906-04-18) &&
 (hour >= 5))
 reckoning = true;
 else {
 mutex_unlock(&scenario_lk);
 sleep(1);
 }
}
wreak_general_havoc();
mutex_unlock(&scenario_lk);

7

Something is missing

� Mutex protects shared state

� Good

� How can we sleep for the right duration?

� Get an expert to tell us!

8

Once more, with feeling!

mutex_lock(&scenario_lk);
while (cvar = wait_on()) {
 cond_wait(&scenario_lk, &cvar);
}
wreak_general_havoc(); /* locked! */
mutex_unlock(&scenario_lk);

9

wait_on()?

if (y < 1906)
 return (&new_year);
else if (m < 4)
 return (&new_month);
else if (d < 18)
 return (&new_day);
else if (h < 5)
 return (&new_hour);
else
 return (0);

10

What wakes us up?

for (y = 1900; y < 2000; y++)
 for (m = 1; m <= 12; m++)
 for (d = 1; d <= days(month); d++)
 for (h = 0; h < 24; h++)
 ...
 cond_signal(&new_hour);
 cond_signal(&new_day);
 cond_signal(&new_month);
 cond_signal(&new_year);

11

Condition Variable Design

� Basic Requirements

� Keep track of threads asleep “for a while”

� Allow notifier thread to wake sleeping thread(s)

� Must be thread-safe

12

Why two parameters?

condition_wait(mutex, cvar);

� Lock required to access/modify the shared state

� Whoever awakens you will need to hold that lock

� You'd better give it up.

� When you wake up, you will need to hold it

� “Natural” for condition_wait() to un-lock/re-lock

� But there's something more subtle

13

Condition Variable Implementation

� mutex

� multiple threads can condition_wait() at once

� “queue” - of sleeping processes

� FIFO or more exotic

14

Condition Variable Implementation

cond_wait(mutex, cvar)
{
 lock(cvar->mutex);
 enq(cvar->queue, my_thread_id());
 unlock(mutex);
 ATOMICALLY {
 unlock(cvar->mutex);
 pause_thread();
 }
}

� What is this “ATOMICALLY” stuff?

15

Pathological execution sequence

cond_wait(m, c); cond_signal(c);
enq(c->que, me);
unlock(m);
unlock(c->m);

lock(c->m);
id = deq(c->que);
thr_wake(id);
unlock(c->m);

thr_sleep();

16

Achieving condition_wait() Atomicity

� Disable interrupts (if you are a kernel)

� Rely on OS to implement condition variables

� (yuck?)

� Have a “better” sleep()/wait() interface

17

Semaphore Concept

� Integer: number of free instances of a resource

� Thread blocks until it is allocated an instance

� wait(), aka P(), aka proberen(“wait”)

� wait until value > 0

� decrement value

� signal(), aka V(), aka verhogen(“increment”)

� increment value

� Just one small issue...

� wait() and signal() must be atomic

18

“ Mutex-style” Semaphore

semaphore m = 1;
do {
 wait(m); /* mutex_lock() */
 ..critical section...
 signal(m); /* mutex_unlock() */
 ...remainder section...
} while (1);

19

“ Condition-style” Semaphore

Thread 0 Thread 1
wait(c);

result = 42;
signal(c);

use(result);

20

“ Condition with Memory”

Semaphores retain memory of signal() events
“ full/empty bit”

Thread 0 Thread 1
result = 42;
signal(c);

wait(c);
use(result);

21

Semaphore vs. Mutex/Condition

� Good news

� Semaphore is a higher-level construct

� Integrates mutual exclusion, waiting

� Avoids mistakes common in mutex/condition API

� Lost signal()

� Reversing signal() and wait()

� ...

22

Semaphore vs. Mutex/Condition

� Bad news

� Semaphore is a higher-level construct

� Integrates mutual exclusion, waiting

� Some semaphores are “ mutex-like”

� Some semaphores are “ condition-like”

� How's a poor library to know?

23

Semaphores - 31 Flavors

� Binary semaphore

� It counts, but only from 0 to 1!

� “ Available” / “ Not available”

� Consider this a hint to the implementor...

� “ Think mutex!”

� Non-blocking semaphore

� wait(semaphore, timeout);

� Deadlock-avoidance semaphore

� #include <deadlock.lecture>

24

My Personal Opinion

� One simple, intuitive synchronization object

� In 31 performance-enhancing flavors!!!

� “ The nice thing about standards is that you have
so many to choose from.”

� Andrew S. Tanenbaum

25

Semaphore Wait: The Inside Story

wait(semaphore s) {
 ACQUIRE EXCLUSIVE ACCESS
 --s->count;
 if (s->count < 0) {
 enqueue(s->queue, my_id());
 ATOMICALLY
 RELEASE EXCLUSIVE ACCESS
 thread_pause()
 } else {
 RELEASE EXCLUSIVE ACCESS
 }
}

26

Semaphore Signal - The Inside Story

signal(semaphore s) {
 ACQUIRE EXCLUSIVE ACCESS
 ++s->count;
 if (s->count <= 0) {
 tid = dequeue(s->queue);
 thread_wakeup(tid);
}
RELEASE EXCLUSIVE ACCESS

� What's all the shouting?

� An exclusion algoritm much like a mutex

� OS-assisted atomic de-scheduling

27

Monitor

� Basic concept

� Semaphore eliminate some mutex/condition mistakes

� Still some common errors

� Swapping “ signal()” & “ wait()”

� Accidentally omitting one

� Monitor: higher-level abstraction

� Module of high-level language procedures

� All access some shared state

� Compiler adds synchronization code

� Thread in any procedure blocks all thread entries

28

Monitor “ commerce”

int cash_in_till[N_STORES] = { 0 };
int wallet[N_CUSTOMERS] = { 0 } ;

boolean buy(int cust, store, price) {
 if (wallet[cust] >= price) {
 cash_in_till[store] += price;
 wallet[cust] -= price;
 return (true);
 } else
 return (false);
}

29

Monitors – What about waiting?

� Automatic mutal exclusion is nice...

� ...but it is too strong

	 Sometimes one thread needs to wait for another

� Automatic mutual exclusion forbids this

� Must leave monitor, re-enter - when?

	 Have we heard this “ when” question before?

30

Monitor condition variables

	 Similar to condition variables we've seen

	 condition_wait(cvar)

� Only one parameter

 Mutex-to-drop is implicit

� (the “ monitor mutex”)

	 signal() policy question - which thread to run?

 Signalling thread? Signalled thread?

 Or: signal() exits monitor as side effect

31

Summary

	 Two fundamental operations

 Mutual exclusion for must-be-atomic sequences

 Atomic de-scheduling (and then wakeup)

	 Mutex style

 Two objects for two core operations

	 Semaphores, Monitors

 Same core ideas inside

32

Summary

	 What you should know

 Issues/goals

 Underlying techniques

 How environment/application design matters

	 All done with synchronization?

 Only one minor issue left

� Deadlock

