
Source Control

Zach Anderson (Spring 2003)
Dave Eckhardt

Outline

• Motivation
• Repository vs. Working Directory
• Conflicts and Merging
• Branching
• PRCS – Project Revision Control System

Goals

• Working together should be easy
• Time travel

– Useful for challenging patents
– Very useful for reverting from a sleepless hack

session
• Parallel universes

– Experimental universes
– Product-support universes

Goal: Shared Workspace

• Reduce development latency via parallelism
– [But: Brooks, Mythical Man-Month]

awesome.c

Alice

Charlie

Bob

Devon

work

work

work

work

Goal: Time Travel

• Retrieving old versions should be easy.

Once Upon A Time…

Alice: What happened to the code? It doesn’t work.
Charlie: Oh, I made some changes. My code is 1337!
Alice: Rawr! I want the code from last Tuesday!

Goal: Parallel Universes

• Safe process for implementing new features.
– Develop bell in one universe
– Develop whistle in another
– Don't inflict B's core dumps on W
– Eventually produce bell-and-whistle release

How?

• Keep a global repository for the project.

The Repository

• Version
– Contents of some files at a particular point in time
– AKA “Snapshot”

• Project
– A “sequence” of versions

• (not really)

• Repository
– Directory where projects are stored

The Repository

• Stored in group-accessible location
– Old way: file system
– Modern way: “ repository server”

• Versions in repository visible to whole group
• “ Commit access” often a separate privilege

How?

• Keep a global repository for the project.
• Each user keeps a working directory.

The Working Directory

• Many names (“ sandbox”)
• Where revisions happen
• Typically belongs to one user
• Versions are checked out to here
• New versions are checked in from here

How?

• Keep a global repository for the project.
• Each user keeps a working directory.
• Concepts of checking out, and checking in

Checking Out. Checking In.

• Checking out
– A version is copied from the repository

• Typically “ Check out the latest”
• Or: “ Revision 3” , “ Yesterday noon”

• Work
– Edit, add, remove, rename files

• Checking in
– Working directory atomically copied to repository
– Result: new version

Checking Out. Checking In.
Repository Working Directory

 v0.1
Copy of
v0.1

work

Modified
v0.1 v0.2

check out

check in

How?

• Keep a global repository for the project.
• Each user keeps a working directory.
• Concepts of checking out, and checking in
• Mechanisms for merging

Conflicts and Merging

• Two people check out.
• Both modify foo.c
• Each wants to check in a new version.
• Whose is the correct new version?

Conflicts and Merging

• Conflict
– Independent changes which “ overlap”
– Textual overlap detected by revision control
– Semantic conflict cannot be

• Merge displays conflicting updates to each file
• Pick which code goes into the new version

– A, B, NOTA
• Picture now, example later

Conflicts and Merging

work
work

 v0.1

 v0.2

 v0.3

Copy of
v0.1

Copy of
v0.1

v0.2 and
B merged

Modified
v0.1 ‘A’

check out check out

check in

Repository

check in

merge

Modified
v0.1 ‘B’

Alice Bob

How?

• Keep a global repository for the project.
• Each user keeps a working directory.
• Concepts of checking out, and checking in
• Mechanisms for merging
• Mechanisms for branching

Branching

• A branch is a sequence of versions
– (not really...)

• Changes on one branch don't affect others
• Project may contain many branches
• Why branch?

– Implement a new “ major” feature
– Begin an independent sequence of development

Branching

 v0.3 v1.1branch

 v0.37 v1.42

 v1.43

merge

The actual branching and
merging take place in a
particular user’ s working
directory, but this is what
such a sequence would look
like to the repository.

Branch Life Cycle

• “ The Trunk”
– “ Release 1.0” , “ Release 2.0” , “ Release 3.0” , ...

• Release 1.0 maintenance branch
– 1.0.1, 1.0.2, ...
– Bug-fix updates as long as 1.0 has users

• Internal development branches
– 1.1.1, 1.1.2, ...
– Probably 1.1.1.client, 1.1.1.server

Branch Life Cycle

• Successful development branch
– Merged back to parent
– No further versions

• Unsuccessful development branch
– Some changes pulled out?
– No further versions

• Maintenance branch
– “ End of Life” : No further versions

Are Branches Deleted?

• Generally a bad idea
– Complicated data structure update

• [Not a well-tested code path]
– History can always turn out to be useful

Source Control Software

• CVS
– very widely used
– mature, lots of features
– default behavior often wrong

• OpenCM
– security-conscious design
– not widely used

• BitKeeper
– Favored by Linus Torvalds
– “ Special” license restrictions

• SubVersion
– lots of potential
– not ready yet

• PerForce
– commercial
– conceptually reasonable

design
– works ok

Dave's Raves

• CVS
– Commit: atomic if you are careful
– Named snapshots: if you are careful
– Branching: works if you are careful
– The core operations require care & expertise!!!

• Many commercial products
– Require full-time person, huge machine
– Punitive GUI
– Poor understanding of data structure requirements

Recommendation for 15-410

• PRCS, Project Revision Control System
– Small “ conceptual throw weight”
– Easy to use, state is visible
– No bells & whistles

• Opportunity to learn revision control concepts
– Quick start when joining research project/job
– They will probably not be using PRCS

Getting Started

• Add 410 programs to your path (in bash):
– $export
PATH=/afs/cs.cmu.edu/academic/class/15410
-f03/bin:$PATH

• Set PRCS_REPOSITORY
– $export
PRCS_REPOSITORY=/afs/cs.cmu.edu/academic/
class/15412-s03-users/group-99/REPOSITORY

Creating A New Project

• In a working directory:
– $prcs checkout P

– P is the name of the project

• Creates a file: P.prj

The Project File
;; -*- Prcs -*-
(Created-By-Prcs-Version 1 3 0)
(Project-Description "")
(Project-Version P 0 0)
(Parent-Version -*- -*- -*-)
(Version-Log "Empty project.")
(New-Version-Log "")
(Checkin-Time "Wed, 15 Jan 2003 21:38:47 -0500")
(Checkin-Login zra)
(Populate-Ignore ())
(Project-Keywords)
(Files
;; This is a comment. Fill in files here.
;; For example: (prcs/checkout.cc ())
)
(Merge-Parents)
(New-Merge-Parents)

Description of project.

Make notes about
changes before
checking in a new
version

List of files

Using the Project File

• Adding Files
– $prcs populate P file1 file2 … fileN

– To add every file in a directory
• $prcs populate P

• Removing, renaming files
– See handout

Checking In

• Checking in
– $prcs checkin P

– check in will fail if there are conflicts.

Conflicts and Merging

• Suppose this file is in the repository for project P:

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 printf("Hello World!");
 return 0;
}

Conflicts and Merging

• Suppose that Alice and Charlie check out this
version, and make changes:

Alice’s Changes
#include <stdlib.h>
#include <stdio.h>

#define SUPER 0

int main(void)
{
 /* prints "Hello World"
 to stdout */
 printf("Hello World!");
 return SUPER;
}

Charlie’s Changes
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 /* this, like, says
 hello, and stuff */
 printf("Hello Hercules!");
 return 42;
}

Conflicts and Merging

• Suppose Alice checks in first.
• If Charlie wants to check in he must perform a

merge
– $prcs merge

– The default merge option performs a CVS-like merge.

Conflicts and Merging

• The file after a merge
#include <stdlib.h>
#include <stdio.h>

#define SUPER 0

int main(void)
{
<<<<<<< 0.2(w)/hello.c Wed, 19 Feb 2003 21:26:36 -0500 zra (P/0_hello.c 1.2 644)
 /* this, like, says hello, and stuff */
 printf("Hello Hercules!");
 return 42;
=======
 /* prints "Hello World" to stdout */
 printf("Hello World!");
 return SUPER;
>>>>>>> 0.3/hello.c Wed, 19 Feb 2003 21:36:53 -0500 zra (P/0_hello.c 1.3 644)
}

Conflicts and Merging

• Pick/create the desired version
– Check that into the repository.

Branching

• To create the first version of a new branch:
– $prcs checkin -rWednesday P

• To merge with branch X version 37:
– $prcs merge -rX.37 P

Information

• To get a version summary about P:
– $prcs info P

– with version logs:
• $prcs info -l P

Suggestions

• Develop a convention for naming revisions
– Date
– Type of revision(bug-fix, commenting, etc.)
– Short phrase

• When to branch?
– Bug fixing?

• Check out, fix, check in to same branch
– Attempting COW Fork after regular Fork works?

• Branching probably a good idea.

Summary

• We can now:
– Create projects
– Check source in/out
– Merge, and
– Branch

• See PRCS documentation:
– Complete list of commands
– Useful options for each command.

